

HORIZON-CL5-2021-D4-01

EUROPEAN COMMISSION

European Climate, Infrastructure and Environment Executive Agency

Grant agreement no. 101069610

This project is funded by the European Union’s 'Horizon Europe Research & Innovation programme' under grant agreement

No 101069610. This publication reflects the authors’ view only and the European Commission is not responsible for any

use that may be made of the information it contains.

WP3 – D3.1

Interoperable specifications of APIs

and data models

Main authors:

KENT

Ref. Ares(2024)381753 - 17/01/2024

2

1

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Project contractual details

Project title

An Inclusive toolBox for accElerating and smartening deep

renovation

Project acronym In CUBE

Grant agreement no. 101069610

Project duration 48 months (01/07/2022 – 30/06/2026)

Document details

Deliverable no. 3.1

Dissemination level PU

Work package WP3

Task T3.1

Due date M17 (30/11/2023)

Actual submission date M19 (17/01/2024)

Lead beneficiary 2 (KENT)

Contributing beneficiary/is

1 (CERTH), 7 (FBK), 8 (RINA-C), 11 (TERA), 12 (EVOLVERE), 15

(CIRCE), 16 (METRO7), 16.1 (ESTUDIO), 20 (VW)

Authors

Full Name Beneficiary Contact Information

Sofia Kleisarchaki KENT sofia.kleisarchaki@kentyou.com

Cristina Verde Ramis CIRCE mcverde@fcirce.es

Andrea Cavallaro TERA andrea.cavallaro@terasrl.it

Rita De Stefano RINA-C rita.destefano@rina.org

Fabio Bolletta RINA-C fabio.bolleta@rina.org

Evangelos Bellos CERTH e.bellos@certh.gr

Eleni Chatzigeorgiou CERTH e.chatzigeo@certh.gr

Petros Iliadis CERTH iliadis@certh.gr

Ioannis Lampropoulos CERTH i.labropoulos@certh.gr

Stefanos Efstratios Petridis CERTH s.petridis@certh.gr

Andreas Sitarists CERTH a.seitaridis@certh.gr

Antonios Zacharis CERTH a.zacharis@certh.gr

Stylianos Zikos CERTH szikos@iti.gr

mailto:sofia.kleisarchaki@kentyou.com
mailto:mcverde@fcirce.es
mailto:andrea.cavallaro@terasrl.it
mailto:rita.destefano@rina.org
mailto:fabio.bolleta@rina.org
mailto:e.bellos@certh.gr
mailto:e.chatzigeo@certh.gr
mailto:iliadis@certh.gr
mailto:i.labropoulos@certh.gr
mailto:s.petridis@certh.gr
mailto:a.seitaridis@certh.gr
mailto:a.zacharis@certh.gr
mailto:szikos@iti.gr

2

2

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Nikolaos Tarsounas CERTH tarsounasnikos@iti.gr

Giorgos Giannopoulos CERTH ggiannopoulos@iti.gr

Alessandro Burgio EVOLVERE alessandro.burgio@evolvere.io

Andrea Gobbi FBK agobbi@fbk.eu

Reviewers

Full Name Beneficiary Contact Information

Stylianos Zikos CERTH szikos@iti.gr

Helen Chatzigeorgiou CERTH e.chatzigeo@certh.gr

History of changes

Version Date Beneficiary Changes

0.1 18/10/23 KENT Initial version

0.2 13/11/23 KENT

Integrating CIRCE, TERA, RINA-C

contributions

0.3 15/11/23 KENT Integrating CERTH contributions

0.4
17/11/23

KENT

Integrating CERTH, EVOLVERE and

RINA-C contributions

0.5 22/11/23 KENT

Integrating RINA-C contributions and

updating Section 4 and 5.

0.6 24/11/23 KENT Updates from all partners

0.9 12/12/23 KENT Final version ready for internal review

1.0 16/01/24 KENT Final version ready for submission

mailto:tarsounasnikos@iti.gr
mailto:alessandro.burgio@evolvere.io
mailto:agobbi@fbk.eu

2

3

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Executive Summary

This document expounds upon the architecture, data model, available protocols, and designed APIs

for each InCUBE component. Building upon the foundation laid out in D1.5, it extends the initial

work by delving into the details of each InCUBE component and their-between interactions.

Upon comprehending each InCUBE component, their interconnected relationships and maturity

level, this deliverable goes on to define the InCUBE interoperability framework. This framework is

composed of specifications, including features of the digital twin of buildings and ontologies. These

specifications play a pivotal role in facilitating data exchange across a spectrum of entities,

encompassing devices, building systems, data platforms, products, applications, services, and

operations. Importantly, these specifications build upon the achievements of T3.1, ensuring an

efficient and cohesive ecosystem.

To demonstrate the InCUBE’s interoperability layer, a use case is presented. This use case serves to

showcase the practical applications and capabilities of the InCUBE's interoperability layer. Through

this illustrative example, stakeholders can gain insights into how the InCUBE’s integrates diverse

components, fostering an environment of interoperability and efficiency.

2

4

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Table of contents

1 Introduction ... 5

1.1 Aim of the deliverable 5

1.2 Dependencies with other tasks 5

1.3 Structure of the deliverable 5

2 Interoperability Framework .. 6

2.1 InCUBE Software components 6

2.2 Components Integration Guidelines 6

2.3 System Maturity 8

3 Specifications for Interoperability .. 9

3.1 Specifications of InCUBE Components 9
3.1.1 Digital Building Logbook .. 9
3.1.2 Modular BIM/CIM Platform ... 19
3.1.3 Eclipse sensiNact ... 21
3.1.4 INTEMA .. 26
3.1.5 VERIFY ... 29
3.1.6 InCUBE Planning Guide ... 32
3.1.7 Resilience Dashboard .. 34
3.1.8 AR/VR Training Suite ... 36
3.1.9 Lean Construction Platform ... 37
3.1.10 Job Scheduling Optimizer .. 39
3.1.11 Renovation Marketplace .. 42
3.1.12 Energy Cloud EMS .. 43
3.1.13 Smart Building EMS (S-BEMS) .. 45
3.1.14 District EMS (EvoDistrict) .. 50
3.1.15 PPE Monitoring System... 53
3.1.16 Anti-Collision System ... 55
3.1.17 Area Boundary System .. 57
3.1.18 Environmental Monitoring System .. 58

3.2 Common Specifications 62
3.2.1 Common Building Features ... 62
3.2.2 Standard Ontologies ... 64

4 Use Case on Cross-Domain Data Interoperability 73

5 Conclusion ... 76

6 Annex: DBL Data Models .. 77

2

5

Document ID: [101069610] [InCUBE] – D3.1 (v1)

List of figures

Figure 1 Software Components Interactions .. 6

Figure 2 InCube Framework Maturity .. 8

Figure 3 Organizational Structure of BIM/CIM Platform 20

Figure 4 Architecture of Eclipse sensiNact ... 22

Figure 5 sensiNact Data Model ... 23

Figure 6 INTEMA.building Architecture ... 26

Figure 7 INTEMA.building System Definition Process ... 27

Figure 8 INTEMA.building Data Model ... 27

Figure 9 VERIFY's Architecture .. 29

Figure 10 VERIFY's Data Model ... 30

Figure 11 Resilience Dashboard .. 34

Figure 12 JSO Architecture.. 39

Figure 13 JSO Data Model ... 40

Figure 14 Energy Cloud System Architecture ... 45

Figure 15 BeetaBox IoT Edge Computing Gateway Front Face 47

Figure 16 BeetaBox IoT Edge Computing Gateway Rear Face 47

Figure 17 EvoDistrict Architecture .. 51

Figure 18 Eugenio gateway ... 51

Figure 19 Smart Meter .. 52

Figure 20 Block Diagram of PPE Monitoring .. 54

Figure 21 Anti-Collision System .. 55

Figure 22 Block Diagram of Anti-Collision System ... 56

Figure 23 Block Diagram of Area Boundary System ... 58

Figure 24 Sound Level Meter .. 59

Figure 25 Thermohygrometer ... 59

Figure 26 On the left: IMC 5008 Data Logger. On the right: connectors

ACC/DSUBM. .. 60

Figure 27 Environmental Monitoring System ... 60

Figure 28 Classes and relationships involved in Zones 66

Figure 29 Modelling product structures example using the BPO 68

https://kentyou0.sharepoint.com/sites/kentyou.com/Documents%20partages/General/2-%20Institutional%20Projects/1-INCUBE/WP3/D3.1/InCUBE_D3.1_Interoperable%20specifications%20of%20APIs%20and%20data%20models_v1.0_after_review.docx#_Toc156315123
https://kentyou0.sharepoint.com/sites/kentyou.com/Documents%20partages/General/2-%20Institutional%20Projects/1-INCUBE/WP3/D3.1/InCUBE_D3.1_Interoperable%20specifications%20of%20APIs%20and%20data%20models_v1.0_after_review.docx#_Toc156315142
https://kentyou0.sharepoint.com/sites/kentyou.com/Documents%20partages/General/2-%20Institutional%20Projects/1-INCUBE/WP3/D3.1/InCUBE_D3.1_Interoperable%20specifications%20of%20APIs%20and%20data%20models_v1.0_after_review.docx#_Toc156315143
https://kentyou0.sharepoint.com/sites/kentyou.com/Documents%20partages/General/2-%20Institutional%20Projects/1-INCUBE/WP3/D3.1/InCUBE_D3.1_Interoperable%20specifications%20of%20APIs%20and%20data%20models_v1.0_after_review.docx#_Toc156315144
https://kentyou0.sharepoint.com/sites/kentyou.com/Documents%20partages/General/2-%20Institutional%20Projects/1-INCUBE/WP3/D3.1/InCUBE_D3.1_Interoperable%20specifications%20of%20APIs%20and%20data%20models_v1.0_after_review.docx#_Toc156315144

2

6

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 30 Component attributes example using BPO ... 69

Figure 31 SAREF ontology overview [https://saref.etsi.org/core/v3.1.1/] 70

Figure 32 SAREF Types of devices [https://saref.etsi.org/core/v3.1.1/] 71

Figure 33 SAREF Function class [https://saref.etsi.org/core/v3.1.1/] 71

List of tables

Table 1 Integration Guidelines .. 7

Table 2 Common Features of Buildings and Building Elements 62

Table 3 Building Product Ontology ... 67

List of Acronyms and Abbreviations

Term Description

AI Artificial Intelligence

API Application Programming Interface

BIM Building Information Modelling

CIM Common Information Model

CSV Comma-Separated Values

DBL Digital Building Logbook

DT Digital Twin

EMS Energy Management System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

IFC International Foundation Class

IoT Internet of Things

IRL Integration Readiness Level

JSO Job Scheduling Optimizer

2

7

Document ID: [101069610] [InCUBE] – D3.1 (v1)

JSON JavaScript Object Notation

KPI Key Performance Indicator

LCA Life Cycle Assessment

LCC Life Cycle Cost

MQTT Message Queuing Telemetry Transport

PDF Portable Document Format

PPE Personal Protective Equipment

PV Photovoltaic

RD Resilience Dashboard

REST REpresentational State Transfer

SAREF Smart Applications REFerence (ontology)

SRI Smart Readiness Indicator

SRL System Readiness Level

TLS Terrestrial Laser Scanning

TRL Technology Readiness Level

VR Virtual Reality

WebRTC Web Real-Time Communication

WP Work Package

Introduction

5

Document ID: [101069610] [InCUBE] – D3.1 (v1)

1 Introduction

1.1 Aim of the deliverable
This deliverable aims to provide the architecture, data model, available protocols and designed APIs

for each InCUBE component, which will enable the seamless interaction among these components.

Moreover, it is detailing common specifications, such as features of the digital twin of buildings and

ontologies. These specifications will be applied to ensure the efficient data exchange among

devices, building systems, data platforms, products, applications, services and operations, building

upon outcomes of T3.1. Last but not least, this deliverable is describing a use case that will

demonstrate the capabilities of the InCUBE’s interoperability layer.

1.2 Dependencies with other tasks
This deliverable relies on the outcomes of task T1.5 which defined the InCUBE architecture, system

requirements and technical integration. The work of T1.5 is reported in D1.5 and enriched the

content of this deliverable.

Moreover, the deliverable describes the outcomes of task T3.1 – Interoperability Framework for

building systems, products, and operations. The task T3.1 specified the APIs and data models to

ensure data exchange and seamless connection among InCUBE components.

The work reported in this deliverable on the interoperable specifications of APIs and data models

will facilitate the creation of the InCUBE interoperability framework and will feed the upcoming

deliverable D3.2 – InCUBE Interoperability Framework.

Last but not least, the common specifications of the Digital Twin reported in this deliverable will be

implemented within the activities of T3.4 and will be reported in the upcoming deliverable D3.5 –

DTs of Buildings.

1.3 Structure of the deliverable
Section 2 provides an overview of the InCUBE software components and their between interactions.

Moreover, it assesses the designed specifications based on the integration guidelines defined in

D1.5 and quantifies the maturity of the different components.

Section 3 presents the designed specifications for each InCUBE component, by discussing its

architecture, data model, protocols and APIs. Moreover, it presents the common InCUBE

specifications; features of Digital Twin and standard ontologies.

Section 4 defines a use case for demonstrating the benefits of the InCUBE interoperability layer.

Section 5 summarizes the deliverable.

Interoperability Framework

6

Document ID: [101069610] [InCUBE] – D3.1 (v1)

2 Interoperability Framework

2.1 InCUBE Software components
Figure 1 gives a quick overview of the different InCUBE software components, the groups that they

formulate as well as their between interactions. An arrow indicates that the tail (source) component

interacts with the head (target) component in read (green), write (blue) or read&write (red) mode.

The arrow represents the interaction source and the colour the data direction.

A detailed explanation of Figure 1 can be found in D1.5. Here, we use the figure as a reminder of

all the existing components that are available to the pilot demonstrations.

Figure 1 Software Components Interactions

2.2 Components Integration Guidelines

Given the software components and the interactions between them, presented in Section 2.1, this

section will provide some advice on the implementation of these interactions.

Table 1 provides general guidelines that need to be respected before the integration of two

components. These guidelines were initially defined in D1.5 and they should be considered as good

practices instead of absolute rules. The third column of Table 1 attempts to evaluate each guideline

based on the current status of the integration work.

Interoperability Framework

7

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Table 1 Integration Guidelines

Ref Integration Guideline Description Status (M17)

IG1 Use similar network protocols over the project. Most of

the components are intended to be accessed via:

 HTTP to access static files,

 HTTP REST to access APIs,

 WebSocket for API subscriptions,

 MQTT for sensor updates.

This list is not exhaustive, but adding non-standard or

proprietary protocols should be discussed.

According to Section 3, all network

protocols to be used lie within the

proposed list of IG1.

IG2 Data, payloads, and files should be transferred using a

protocol and a format that doesn’t require a specific

consumer technology (e.g., use a JSON representation

instead of Java Serializable Format).

According to Section 3, IG2 is

followed as data and payloads are

exchanged using JSON format.

IG3 All public APIs should be documented.

Components providing REST APIs should be accompanied

by an OpenAPI2 description. Components providing

WebSocket and MQTT endpoints should be described

using the AsyncAPI3 specification.

Other protocols should be described either following the

OpenAPI or AsyncAPI specification, or by providing a

readable Markdown file describing accesses and

payloads.

All currently available API

specifications respect IG3 and

provide proper documentation (e.g.,

see Section 3.1.3.4).

IG4 Components exchanging files must agree on supported

file formats. Open standards should be preferred, but

proprietary file formats are allowed if supported by both

components.

File formats have been specified in

Section 3.

IG5 Operations requiring a date, time, duration, or time

interval information should follow the ISO 8601 standard.

All time-related strings must either contain an explicit

time offset from UTC or be considered UTC. Local time

should be avoided in APIs.

All time-related strings follow IG5.

IG6 Each component should be associated to a set of tests

validating its own access points. Those tests can be used

as examples for IG3.

To be evaluated

Interoperability Framework

8

Document ID: [101069610] [InCUBE] – D3.1 (v1)

IG7 Each component should be associated to a set of

integration tests validating its accesses to the

components it works with.

To be evaluated

IG8 When applicable, components should interact using

similar ontologies. Components requiring a

transformation should document it explicitly.

To be evaluated

IG9 Components should share security credentials and rights

managements to ease user interactions. This can be done

either by configuration (secrets sharing) or by centralized

authentication (token-based).

To be evaluated

2.3 System Maturity

Figure 2 shows the different InCUBE components as nodes of the graph and their-between

interconnections as edges. Each InCUBE component is annotated with a value showing the

Technology Readiness Level (TRL) of that component. Similarly, each connection is represented with

a different line thickness indicating the Integration Readiness Level (IRL) between two components.

Figure 2 InCube Framework Maturity

The evaluation of the TRL and IRL, as well as of the entire system’s readiness, will be performed and

reported periodically within task T1.5. This will allow us to track the evolution of the components

maturity.

Specifications for Interoperability

9

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3 Specifications for Interoperability

3.1 Specifications of InCUBE Components

3.1.1 Digital Building Logbook

3.1.1.1 Data Models

The definition of the common data models to describe main entities will allow supporting activities

and functionalities of InCUBE software solutions applied at various renovation phases: Design,

planning, renovation execution, monitoring, and assessment. Initial versions of data models in JSON

format have been developed in order to describe building topology, building systems, products, as

well as operations related to renovation activities.

The main entities that were identified are the following: Building, Device, Sensor, Product, Activity,

RenovationScenario, User, and Event. Data of these entities will be stored in the Digital Building

Logbook component, which is the central database of InCUBE. Each entity is described by a set of

attributes. The proper type of JSON data is utilised for each attribute, which can be numeric, string,

Boolean, Array, or Object. In addition, there are specific attributes for declaring any existing

associations with other entities. There shall also be the possibility to add new attributes

(extensibility) to each data model in a dedicated section.

Relevant existing ontologies have been considered during the development of the InCUBE data

models (refer to the corresponding section for more information about the ontologies). In particular,

the selected attributes, naming conventions, data types, and logical structure were defined in

accordance with existing ontologies depending on each entity defined. A short description of each

entity is provided next.

Building

The Building entity is used to describe a building by including related attributes such as a unique

ID, name, location, type, and others. It adopts properties and the organization structure from the

Building Topology Ontology. In particular, a building is located at a site and can be composed of

storeys, spaces, and zones.

Device

The Device entity is used to describe equipment designed to accomplish one or more functions in

the building. Indicative instances of devices are HVAC, Heat Pump, PV, and Lights. The attributes

that have been utilised to describe devices are in accordance with the SAREF ontology. It is worth

noting that a device can be controllable through specific commands that are listed in the device

definition. The Type attribute characterizes the device type, while the Category attribute describes

Specifications for Interoperability

10

Document ID: [101069610] [InCUBE] – D3.1 (v1)

whether the device is physical or virtual. Lastly, the states and various functions of the device are

described.

Sensor

The Sensor entity can be regarded as a specific type of device, which detects and responds to events

or changes in the physical environment such as light, motion, or temperature changes. Therefore,

the same base attributes with the device are used (e.g. ID, type, model, location), according to the

SAREF ontology. Indicative sensor types are Environmental (ambient temperature, humidity,

luminance, CO2), Occupancy, and others. The sensing functions are included in the description of a

sensor, defined by the property measured and the unit of measure.

Product

The Product entity is used to describe any complete product of interest that is already installed in a

building, or planned to be installed in a building under renovation, or is simply available in the

market. The representation of a building product that has been adopted is based on the Building

Product Ontology. In particular, a product can be composed of several other components or

assemblies, and the properties of its structure and elements can be described. Moreover, the

relevant elements from the Schema product
1

 have been considered.

Activity

The Activity entity can describe any kind of activity related to building renovation work, such as for

example an installation activity necessary for installing a product at the building, a demolition

activity, a waste collection activity, and other. Attributes such as ID, expected duration, priority,

execution status, start and completion date times are included. Moreover, a constraints section

exists in order to include any constraints that affect the execution of the activity. As far as the

needed resources is concerned, requirements for the personnel, equipment and materials for

executing the activity can be declared. This information can be used when making decisions for

planning and scheduling the activity. Lastly, it is possible to include tasks within an activity that

have their own characteristics. In such a case, an activity is considered completed when all its tasks

have been finished.

RenovationScenario

The RenovationScenario entity is a defined representation of a renovation scenario that is planned

to be evaluated during the renovation design phase. The InCUBE P-GUIDE is the software component

that is directly connected with this entity. A renovation scenario includes a unique ID, a short

description, and information on the involved building where the renovation scenario can be applied.

1

 https://schema.org/Product

https://schema.org/Product

Specifications for Interoperability

11

Document ID: [101069610] [InCUBE] – D3.1 (v1)

In addition, it is composed of a list of renovation activities belonging to the Activity entity, that are

included in the scenario.

User

The User entity includes properties (both static and dynamic) that are needed in order to describe

an actor. Apart from the unique ID, the name of the user and the associated building(s), personal

preferences can be included. Users of different roles are supported through the role property, with

indicative values such as Owner, Occupant, Worker, and Manager. A user can have access to one or

more InCUBE software components; therefore, in this case, information related to user

authentication exists (username, email address, password). Lastly, the user representation allows

for the assignment of an experience level and individual skills to users, which is particularly useful

for the automated assignment of the appropriate workforce to an activity.

Event

The Event entity is defined as a message with specific properties, content, and timestamp. Events

can be generated by a sensor, device, or software component, and it is the main method for inserting

and keeping historical information in the InCUBE Digital Building Logbook. In relation to the kind of

information that is included, various types of events have been defined, such as Measurement,

ForecastPowerGeneration, ForecastEnergy, Notification, RenovationStatus, RenovationSchedule. It

shall be noted that the retrieval of multiple events from the DBL is possible by providing a date time

range as input. Common required attributes of all events, regardless of their type, are the unique

ID, type, dateTime, and sourceId (which denotes the sender of the event). The payload of each event

is placed within the “content” property. The exact format and included properties depend on the

event type.

Preliminary data models of the DBL, defined in JSON format, are presented in the Annex.

3.1.1.2 Protocols

Input

The components that use the Logbook to store documents, reports, or other output data will access

it using a HTTP REST interface. In addition, the components notifying the Logbook to store new

events, such as measurements from sensors, will be able to use either the provided HTTP REST

interface or alternatively the Message Queuing Telemetry Transport (MQTT) protocol.

A list of components that will store data to the Digital Building Logbook is provided in the table

below:

Client

component
Access

description
Access

protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

Eclipse SensiNact

Platform
Propagates

events from

IoT sensors

HTTP REST /

MQTT
JSON and/or

XML
Real-time Internal

Specifications for Interoperability

12

Document ID: [101069610] [InCUBE] – D3.1 (v1)

and smart

devices
Report generators Store (push)

generated

documents

by InCUBE

components

HTTP REST

(for sending

and storing

files) / MQTT

(for event

only)

various file

extensions

(e.g., PDF)

Periodic or on-
demand

Internal

Other data

generators
Store (push)

generated

output data

by InCUBE

components

HTTP REST /

MQTT
JSON and/or

XML
Periodic or on-
demand

Internal

Access by other components

A list of components that retrieve data from the Digital Building Logbook is provided in the table

below:

Client

component
Access description Access

protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

P-GUIDE Retrieves properties

of products, pre-

defined set of

activities (renovation

scenarios)

HTTP REST JSON On-demand Internal

Eclipse

SensiNact

Platform

Update on live

events
HTTP REST /

MQTT
JSON Periodic Internal

VERIFY Retrieves

performance data

and

data from EMS

sensors

HTTP REST JSON Periodic Internal

INTEMA Retrieves

sensors/performance

information

HTTP REST JSON Periodic Internal

Job Scheduling

Optimizer
 HTTP REST JSON Periodic Internal

AR/VR Training

Suite
Retrieves

information about

devices, products,

activities, training

material of products’

installation

HTTP REST JSON Periodic Internal

Resilience

Dashboard
 HTTP REST JSON Periodic Internal

Renovation

Marketplace
Retrieves stored

data (e.g.

products, devices

data)

HTTP REST JSON Periodic / On-
demand

Internal

Future client

components

Client-specific needs HTTP REST JSON Periodic / On-
demand

Internal

Specifications for Interoperability

13

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.1.3 APIs

The Digital Building Logbook (DBL) provides an HTTP REST web service Application Programming

Interface (API) for data insertion and retrieval using HTTP calls. The API supports the four main

persistent storage functions, which are Create, Read, Update, and Delete.

In particular, GET and POST HTTP methods have been developed to support the four different types

of requests (insertion, deletion, update, retrieval). The responses of the requests are in JSON format

and contain the “status” property, which can be either “success” or “failed” depending on the

outcome of the query.

The endpoints of the API are used for storing and retrieving data to/from the database. Several

examples are presented next in the form of tables. More details about the endpoints will be provided

in the InCUBE deliverable D3.6 - InCUBE Digital Logbook (v1).

The base URL of all API calls that are handled by the DBL is of the following structure:

http://<ip_address>:8080/api/dbl/api

DBL supports authentication via the use of access tokens. A unique token can be generated for each

InCUBE component. Subsequently, each GET/POST request made must include the generated token

of the caller component within the header of the request as “Authorization: Bearer <token>”. The

DBL authentication function validates the access token in order to ensure that the caller is a

recognised component. In case of unsuccessful validation, the handling of the request is terminated

and a proper notification is sent back.

User

Description
Add a new user

Method POST

Active URL <baseURL>/addUser

Request

Parameters/Body

Content-type: application/json

{user json}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description

Authenticate user by username. The body of the request contains the

username and the user’s password in JSON format

Method POST

Active URL <baseURL>/authenticateUserByUsername

Request

Parameters/Body

Content-type: application/json

{

“site”: “site_name”,

 “username”: “name”,

“passwd”: “userpassword”

}

Response
{“status”:”failed”} on failure or {“status”:”success” , “userId”: <”id”>} on

success

Specifications for Interoperability

14

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Description
Delete a user

Method POST

Active URL <baseURL>/deleteUser

Request

Parameters/Body

Content-type: application/json

{

“site”: “site_name”,

 “userId”: “user1”

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Set password of user

Method POST

Active URL <baseURL>/setUserPassword

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “userId”: “user1”,

 “currentPasswd”: “userpassword”,

 “newPasswd”: “newuserpassword”

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Update property of user

Method POST

Active URL <baseURL>/updateUserProperty

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “userId”: “user1”,

“propertyName”:”name”,

 “propertyValue”: value

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Get information about user

Method GET

Active URL <baseURL>/getUser?site=sitename&userId=user1

Request

Parameters/Body

site

userId

Response JSON which contains information of the user with the given id

Description
Get information of all users

Method GET

Active URL <baseURL>/getUsers?site=sitename

Request

Parameters/Body
site

Response JSON which contains information of all users found

Specifications for Interoperability

15

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Building

Description
Add new building

Method POST

Active URL <baseURL>/addBuilding

Request

Parameters/Body

Content-type: application/json

{building json}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Delete a building

Method POST

Active URL <baseURL>/deleteBuilding

Request

Parameters/Body

Content-type: application/json

{

“site”: “site_name”,

“buildingId”: “building1”

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Retrieve a building by the id

Method GET

Active URL <baseURL>/getBuilding?site=sitename&buildingId=building1

Request

Parameters/Body

site

buildingId

Response JSON of the building

Description
Retrieve buildings of user

Method GET

Active URL <baseURL>/getBuildingsByUser?site=sitename&userId=user1

Request

Parameters/Body

site

userId

Response JSON of the buildings found

Description
Retrieve all buildings in site

Method GET

Active URL <baseURL>/getBuildings?site=sitename

Request

Parameters/Body
site

Response JSON of all buildings found

Product

Description
Add new product

Method POST

Active URL <baseURL>/addProduct

Request

Parameters/Body

Content-type: application/json

{product json}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Specifications for Interoperability

16

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Description
Delete a product

Method POST

Active URL <baseURL>/deleteProduct

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “productId”: “product1”

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Update property of existing product

Method POST

Active URL <baseURL>/updateProductProperty

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “productId”: “product1”,

 “propertyName”:”product property”,

 “propertyValue”: value

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Get product

Method GET

Active URL <baseURL>/getProduct?site=sitename&productId=product1

Request

Parameters/Body

site

productId

Response JSON with information of the product with the given id

Device

Description
Add new device

Method POST

Active URL <baseURL>/addDevice

Request

Parameters/Body

Content-type: application/json

{device json}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Delete a device

Method POST

Active URL <baseURL>/deleteDevice

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “deviceId”: “device1”

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Update property of existing device

Specifications for Interoperability

17

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Method POST

Active URL <baseURL>/updateDeviceProperty

Request

Parameters/Body

Content-type: application/json

{

 “site”: “site_name”,

 “deviceId”: “device1”,

 “propertyName”:”device property”,

 “propertyValue”: value

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Get device

Method GET

Active URL <baseURL>/getDevice?site=sitename&deviceId=device1

Request

Parameters/Body

site

deviceId

Response JSON with information of the device with the given id

Description
Get devices of given type

Method GET

Active URL <baseURL>/getDevicesByType?site=sitename&deviceType=HVAC

Request

Parameters/Body

site

deviceType

Response JSON with information of the devices found

Description
Get devices of specific type and user

Method GET

Active URL
<baseURL>/

getDevicesByTypeUser?site=sitename&userId=user1&deviceType=HVAC

Request

Parameters/Body

site

userId

deviceType

Response JSON with information of the devices found

Event

Description
Set a new event

Method POST

Active URL <baseURL>/setEvent

Request

Parameters/Body

Content-type: application/json

{event json}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Delete an event

Method POST

Active URL <baseURL>/deleteEvent

Request

Parameters/Body

Content-type: application/json

{

“site”: “site_name”,

“eventId”: “24d5d1eb-8974-4a40-b34e-b9eda80524fc”

Specifications for Interoperability

18

Document ID: [101069610] [InCUBE] – D3.1 (v1)

}

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Retrieve existing event by the id

Method GET

Active URL <baseURL>/getEvent?site=sitename&eventId=id

Request

Parameters/Body

site

eventId

Response JSON of the event

Description
Retrieve all events by type within specified time period

Method GET

Active URL

<baseURL>/getEventsByType?site=sitename

&eventType=typeName

&startDateTime=2023-05-10T00:00:00

&endDateTime=2023-06-10T23:00:00

Request

Parameters/Body

site

eventType

startDateTime

endDateTime

Response JSON list of events found

Description
Retrieve all events by type and source id within specified time period

Method GET

Active URL

<baseURL>/getEventsBySourceType?site=sitename

&sourceId=toolName&eventType=typeName

&startDateTime=2023-05-10T00:00:00

&endDateTime=2023-06-10T23:00:00

Request

Parameters/Body

site

sourceId

eventType

startDateTime

endDateTime

Response JSON list of events found

File transfers

Description
Add new file

Method POST

Active URL

<baseURL>/addFileVideo

<baseURL>/addFileImage

<baseURL>/addFileDocument

Request

Parameters/Body

Content-type: application/ x-www-form-urlencoded

Body: form-data file:<filename>

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description
Delete existing file

Method POST

Active URL <baseURL>/deleteFileVideo

Specifications for Interoperability

19

Document ID: [101069610] [InCUBE] – D3.1 (v1)

<baseURL>/deleteFileImage

<baseURL>/deleteFileDocument

Request

Parameters/Body

Content-type: application/json

{ “name”: “video1.mp4” }

Response {“status”:”failed”} on failure or {“status”:”success”} on success

Description

Retrieve files information

(Note: A file can be retrieved via HTTP directly by accessing the URL:

e.g. http://ip_address:port/files/videos/<video_filename>)

Method GET

Active URL <baseURL>/getFilesVideos

Request

Parameters/Body
-

Response {“status”:”failed”} on failure or JSON with files information

MQTT interface

A sub-component of the DBL is able to connect to a deployed MQTT broker, subscribe to MQTT

topics for events, and receive incoming events from other InCUBE components or devices via MQTT.

Then, conversion of the event payload to the proper JSON format is performed if needed, and

insertion of the event in the database is made.

3.1.2 Modular BIM/CIM Platform

This solution is a modular (able to swap BIM object categories) and interoperable web-based

repository of BIM objects (incl. conventional and novel building solutions). In addition, the platform

stores the different BIM and CIM files developed in the project, which contain information related to

the demonstrator buildings and the cities in which they are located.

3.1.2.1 Architecture

The structure of the platform is composed of different folders (extensible and modular):

- Four folders for each demo site: BIM modelling, where .rvt files are uploaded; BIM Objects

Data, containing information about Revit families; IFC exports, which contains .ifc 3D

models; and Point Clouds, where linked .rcp files are stored.

- BIM Objects Repository: This library contains conventional products and innovative InCUBE

products organized into manufacturer-specific folders. To facilitate the seamless

information exchange with developers working on the demo site BIM models, these BIM

objects have been developed in Revit software, utilizing both .rfa and .rvt formats.

- CIM repository: includes the CIM models of the three demo cities: Zaragoza (ES), Trento (IT),

and Groningen (NL). These City Information Models (CIM) for each demo city, serves as

repositories of urban-level building information. Additionally, there is a simplified 2D version

of the BIM models available on .json file formats.

Specifications for Interoperability

20

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 3 shows the organisational structure of the platform and the information contained within

each folder. Access rights are allocated to partners based on their specific needs to safeguard the

confidentiality, integrity and prevention of modification of the platform’s information.

Figure 3 Organizational Structure of BIM/CIM Platform

3.1.2.2 Protocols

Read access to components

The Modular BIM/CIM platform does not get data from other components as it is expected to be

updated directly and manually.

Access by other components

The information and 3D models must be easily accessible in formats that enhance interoperability.

The platform is accessible through a web interface. It will be necessary for it to be usable

programmatically by other components using a REST interface over HTTP(S) and returning files in

an interoperable format e.g., IFC for BIM details and PLY for 3D models. As of now, the files for the

other components are readily available on the BIM/CIM repository. To facilitate easier access, the

option of implementing a REST API has been explored, specifically considering the OneDrive API.

BIM

Models

InCUBE Modular BIM/CIM Platform

BIM

Objects

(By

name)

BIM

Modelling

CIM

Repositor

IT

DEMO

ES

DEMO

NL

DEMO

BIM

Objects

IFC

Exports

Point

Clouds

InCUBE

Product

FBK METRO VW METRO7

ENEREN

Up to Date

Validated

BIM models Read Read & Write

Outcome

Folder

FBK

CIRCE

TERA

EVOLVER

CERTH

KENT

RINA-C

FBK

VW

KENT

WEBO

KOVER

KFLEX

ABORA

TEGOL

Digital

Twins

BIM Objects

Repository

METRO

FBK

VW

KENT

CIM

Models

KENT

Up to Date

Validated

BIM models

(IFC

exports for

DTs)

Users

Specifications for Interoperability

21

Document ID: [101069610] [InCUBE] – D3.1 (v1)

The OneDrive API offers a seamless and secure way to interact with files and data. By integrating

this API, users can enjoy enhanced flexibility and convenience in retrieving, uploading, and

managing files from the repository. While we are considering the OneDrive API, we are also open to

exploring alternative options that might better suit the specific needs of the components.

Here is the list of components retrieving data from this component:

Client

component
Access

description
Access

protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

AR/VR Training

Suite
3D models of

buildings and

items

HTTP Ifc, .rvt files On-demand Internal

Renovation

Marketplace
Description of

BIM items

BIM assets list

HTTP To be

defined

On-demand Internal

INTEMA Building BIM

(with 3D

model)

HTTP .Ifc, .rvt files Scarce (infrequent

occurrences)

Internal

Lean Construction

Platform
3D models of

the building
HTTP To be

defined

Non-periodic

(irregular

intervals)

Internal

P-GUIDE Retrieve

properties of

products,

characteristics

of the

buildings

HTTP Ifc, .rvt files On-demand Internal

Eclipse SensiNact

Platform
Access BIM

models
HTTP Ifc, files Periodic Internal

Smart Building

EMS (S-BEMS)

Building

information

and 3D

structure

HTTP Ifc, .rvt files Once Internal

Energy Cloud EMS Building

information

and 3D

structure

HTTP Ifc, .rvt files Once Internal

3.1.3 Eclipse sensiNact

Eclipse sensiNact is an Open Source framework that aims at creating a common environment in

which heterogeneous devices can exchange information and interact among each other in the IoT

world.

It is a horizontal platform dedicated to IoT and in particularly used in various smart city and smart

home applications. Eclipse sensiNact aims at managing IoT protocols and devices heterogeneity and

provides synchronous (on demand) and asynchronous (periodic or event based) access to

data/actions of IoT devices, as well as access to historic data with generic and easy-to-use API.

Specifications for Interoperability

22

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.3.1 Architecture

Figure 4 shows the architecture of Eclipse sensiNact. Eclipse sensiNact is composed of two main

parts; the southbound and the northbound bridges.

Southbound bridges are specialized into the interaction with devices, which can be sensors,

actuators, other systems, or applications. Each bridge oversees the communicating with a specific

kind of device, using a given protocol. Thanks to an OSGi based architecture, it is possible to add

bridges on the fly, while the gateway is running, to allow the communication with new kind of

devices. The creation of bridges relies on an API which delegates most of the integration work to

the gateway, letting the programmer focus on the communication protocol and the data model of

the device to be integrated. A southbound bridge, based on the MQTT protocol, was used to

communicate with the IoT edge gateway.

Symmetrically to the southbound bridges, northbound bridges are in charge of publishing

information to remote systems. The set of northbound bridges is also extensible, for tailoring

special needs or singular systems. The REST API, which is a northbound bridge, is a key part in our

architecture. It is designed for the administration of the gateway, thanks to a well-documented API.

Such a REST API is also available to facilitate the access to data from the IoT edge gateway.

Figure 4 Architecture of Eclipse sensiNact

The architecture of sensiNact has the following three key characteristics.

 Extensible: sensiNact provides a framework that can adapt and grow as requirements evolve,

without requiring a complete overhaul.

 Modular: sensiNact’s modules are designed to work independently but can also interact with

each other through well-defined interfaces or APIs (Application Programming Interfaces).

This modularity makes it easier to understand, develop, maintain, and scale a system.

 Interoperable: sensiNact’s architecture is designed to ensure that its components can

interact with other systems or components, regardless of their origins or technologies

Specifications for Interoperability

23

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.3.2 Data Models

Eclipse sensiNact represents its data using the following model, shown in Figure 5:

 Model: a static or dynamic representation of a kind of

provider. This allows to describe the structure of a

provider, i.e. its services and the type, default value, description,

… of their resources

 Provider: a provider of services. It usually represents a

physical object, but the granularity depends on the use case. For

example, it can be an IoT device with multiple sensors, a car,

etc.

 Service: the name of a set of resources. All providers have the

reserved admin service which holds sensiNact details about

them, including their location resource.

 Resource: a resource can either represent a property of the

provider (like the temperature read from a sensor) or an action

(for example to send a text message).

3.1.3.3 Protocols

Read access to components

The Eclipse SensiNact platform will access the Digital Building Logbook and the Modular BIM/CIM

platform to obtain the history of the building and its BIM description. It will not proactively retrieve

data from other components.

Target component Access

description
Access

Protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

Digital Building

Logbook
Access history of

events
HTTP JSON Periodic Internal

Modular BIM/CIM

Platform
Access BIM

models
HTTP JSON,

GeoJSON,

.rvt

Periodic (e.g., 2

times -

before/after

renovation)

Internal

Access by other components

InCUBE software components are expected to push the events they receive to the Eclipse SensiNact

platform, which will update its digital twin model and push those events to the Digital Building

Logbook. It is preferred that components that need to subscribe to live events should subscribe to

the Eclipse SensiNact platform instead of listening to the sensors directly. This will increase the

possibilities of sensor abstraction and the reusability of the overall platform.

Figure 5 sensiNact Data Model

Specifications for Interoperability

24

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Client

component
Access

description
Access

protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

Smart Building

EMS (S-BEMS)
Push sensors

events
MQTT /

MQTTS
JSON Every 15 mins Internal

Resilience

Dashboard
Push safety

events
HTTP REST /

MQTT
JSON Real-time Internal

Job Scheduler

Optimizer
Real time

sensor data
HTTP REST /

MQTT
JSON Real-time Internal

Components

requiring real-

time events

Subscription

to real-time

events

HTTP REST /

MQTT
JSON Real-time Internal

Write access to components

The Eclipse SensiNact platform will propagate the events it receives to the Digital Building Logbook.

It can also push BIM updates to the logbook.

Target

component
Access

description
Access

protocol
Data

Format

Frequency of

Collection

Data

Sensitivity

Digital Building

Logbook
Propagates events

from IoT sensors

and smart devices

MQTT JSON Real-time Internal

Digital Building

Logbook
Pushes the

description of

buildings read from

Modular BIM/CIM

platform

HTTP JSON,

GeoJSON,

.rvt

Periodic (e.g., 2

times -

before/after

renovation)

Internal

3.1.3.4 APIs

The Eclipse sensiNact gateway provides a northbound API which interfaces with users and/or

machines to provide access to the digital twin. This is typically using a specific protocol over a more

generic transport (e.g. REST/HTTP or JSON-RPC/Websocket). It is possible to have multiple

northbound providers deployed to a single Eclipse sensiNact gateway instance, allowing access via

different interfaces, protocols and transports.

In the context of the InCUBE project, eclipse sensiNact will provide a RESTful API to allow access to

its data model. For this purpose, the API specifications described below will be supported and

provided to third parties. A more detailed documentation of the above API can be found here:

https://eclipse-sensinact.readthedocs.io/en/latest/northbound/RestDataAccess.html.

GET resources

The following GET resources are available:

 /sensinact - The root of the REST interface returns rich details of all available providers in

the system

 /sensinact/providers/ - Returns an array containing the names of all providers in the system

 /sensinact/providers/{id} - Returns rich details of the provider with id id

Specifications for Interoperability

25

Document ID: [101069610] [InCUBE] – D3.1 (v1)

 /sensinact/providers/{id}/services - Returns an array containing the names of all services for

the provider with id id

 /sensinact/providers/{provider}/services/{id} - Returns rich details of the service with id id

in provider provider

 /sensinact/providers/{provider}/services/{id}/resources - Returns an array containing the

names of all resources for the service with id id in provider provider

 /sensinact/providers/{provider}/services/{service}/resources/{id} - Returns rich details of

the resource with id id in service service with provider provider

 /sensinact/providers/{provider}/services/{id}/resources/{id}/GET - Gets the value of a

resource

 /sensinact/providers/{provider}/services/{id}/resources/{id}/SUBSCRIBE - Gets a Server Sent

Event Stream which is notified for each change to the value of a resource

POST resources

 /sensinact/providers/{provider}/services/{id}/resources/{id}/SET - Sets the value of a

resource

 /sensinact/providers/{provider}/services/{id}/resources/{id}/ACT - Acts on an action

resource

Responses

All of the defined REST resources return a response body. The response body is used to return

information to the client.

Response URI

The uri of the response corresponds to the URI of the incoming request, and identifies the provider,

service, or resource being returned.

Specifications for Interoperability

26

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.4 INTEMA

3.1.4.1 Architecture

INTEMA.building is a web-based application for conducting accurate transient building energy

simulations, able to model multiple energy systems (production, consumption and storage). The

tool is able to estimate with high accuracy the electrical and heating needs of the building. Its

architecture is schematically depicted In Figure 6. The application receives BIM data from the user,

retrieves weather data from an external service2, conducts a building energy performance

simulation and produces timeseries for all major variables of the physical system. Besides

timeseries, INTEMA also calculates a set of KPIs that summarize the overall energy efficiency.

Figure 6 INTEMA.building Architecture

To forecast the thermal behavior of the building in all the important heating-zones / rooms, a

significant number of variables are considered, such as:

 gains/losses from areas inside the building,

 gains/losses from surroundings areas (outside) the building,

 solar gains,

 human presence and internal activities,

 psychrometric chart and operation of HVAC

 equipment and BEMS, and

 local energy production (e.g. PV)

INTEMA.building has streamlined the system definition process into distinct steps presented in

Figure 7. This eliminates common errors during data input. The user successively defines the

relative data starting from the location and weather data, then the thermal zones and the various

2 Photovoltaic Geographical Information System (PVGIS) (europa.eu)

https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en

Specifications for Interoperability

27

Document ID: [101069610] [InCUBE] – D3.1 (v1)

building elements (e.g., wall, slabs, windows etc), and finally the HVAC and electrical systems. This

concludes the system definition process, and the simulation can be performed.

Figure 7 INTEMA.building System Definition Process

3.1.4.2 Data Models

INTEMA’s internal building representation is implemented with an extensive building data model

that covers all relevant physical quantities. The data model follows the general structure presented

in Figure 8. The main node is the System model, which refers to the building system in the context

of INTEMA.building. Systems are connected with the several building elements classes i.e., walls,

slabs, windows etc. Systems also include one or more Runs objects which save the simulation results

in the local database. A useful property is that systems can be shared among multiple users enabling

collaboration.

Figure 8 INTEMA.building Data Model

Specifications for Interoperability

28

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.4.3 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

sensiNact Retrieve BIM

data

HTTP REST JSON Scarce

(manual calls)

Internal

BIM/CIM

platform

Retrieve BIM

data

HTTP REST .Ifc, .rvt

files

Scarce

(manual calls)

Internal

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

VERIFY Push

simulation

results/KPIs

HTTP REST JSON Scarce

(manual

calls)

Confidential

Digital

Building

Logbook

Pushes the

simulation

results/KPIs

for each pilot

site/scenario

HTTP JSON Scarce

(manual

calls)

Confidential

3.1.4.4 APIs

In the context of the InCUBE project, CERTH provides a RESTful API to allow access to its data model.

For this purpose, the API specifications described below are supported and provided to third parties.

GET resources

The following GET resources are available:

 /api/building/runs/- Returns a json object that contains information about the past runs

POST resources

 /api/building/zones/ – posts a form with values of zones properties

 /api/building/constructions/ – posts a form with values of constructions properties

 /api/building/layers/ – posts a form with values of layers properties

 /api/building/walls/ – posts a form with values of wall properties

 /api/building/slabs/ – posts a form with values of slabs properties

 /api/building/titleds/ – posts a form with values of titleds properties

 /api/building/windows/ – posts a form with values of windows properties

 /api/building/doors/ – posts a form with values of doors properties

 /api/building/hvac/ – posts a form with values of HVAC systems properties

 /api/building/elec/ – posts a form with values of electrical systems properties

 /api/building/runs/ – posts a form with run values

Responses

All of the defined REST resources return a response body. The response body is used to return

information to the client.

Response URI

The URI of the response corresponds to the URI of the incoming request, and identifies the provider,

service, or resource being returned.

Specifications for Interoperability

29

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.5 VERIFY

3.1.5.1 Architecture

VERIFY is an online web-based platform, performing environmental and cost oriented analysis and

computations to evaluate building renovations according to the ISO 14040/14044, ISO 15686 and

LEVEL(S) directives. The core of VERIFY is a web application which can be utilized by several entities

such as physical users and external tools. The users can easily set up the current and the planned

state of their building, perform the environmental analysis and review the results through the front-

end of the application. A PostgreSQL database is responsible for keeping all the important

information secure and updated.

For the analysis to be successfully performed timeseries data considering the consumption and

production of energy are required. These data can originate from three different sources: i) CSV

files, ii) external dynamic simulation tools, such as INTEMA, and iii) IoT infrastructure. The CSV files

can be manually uploaded by the user through the user interface of the application. In case such

data are not available, the user can request timeseries from an external simulation tool. The process

is automatic and the communication with the simulation tool is achieved using REST APIs. Finally,

VERIFY can be connected to physical IoT infrastructure and continuously ingest real time data

through the MQTT protocol. This data is usually stored in a private big data repository and retrieved

for the purposes of the analysis upon request. Moreover, such data can be even retrieved from

external big data repositories through REST APIs. The overall architecture of VERIFY is presented in

Figure 9.

Figure 9 VERIFY's Architecture

Specifications for Interoperability

30

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.5.2 Data Models

Figure 10 VERIFY's Data Model

VERIFY represents its data using the following model, shown in Figure 10:

 User: Represents a user of VERIFY. Each user may own/manage 0 to multiple buildings.

 Building: Represents a building and stores its basic information, such as an identifier name,

its location etc.

 Baseline/Upgrade scenario: It represents the current state of the building and the planned

scenarios. The state of the building is a collection of the envelope parameters, the thermal

components that are installed on the building and the pricing and investment details. All of

those details are used to perform the lifecycle environmental and costing analysis. A building

has a single baseline scenario and may have 1 or multiple renovation plans.

o Consumption components: Represents a collection of the components that are

closely related to the consumption of energy. This might include active or even

passive components. Active components (HVAC) are those that consume electricity

or other fuels in order to produce heat or cool, such as boilers and heat-pumps.

Passive components (INS) are those that prevent thermal losses, such as wall

insulation or glazing. Moreover, the infrastructure considering hot water supply

(DHW) are included.

o Production components: Represents a collection of the components that are closely

related to the production of electricity through renewable resources, such as

photovoltaics (PV) and wind turbines (WT). Additionally, electricity storage

components (BAT), i.e. batteries, are included.

o Electrical plan: It includes details about the electrical consumption of the building,

such as the electricity consumption and the pricing scheme, considering the energy

consumption and production.

o Investment plan: It includes several economic factors that affect the assessment of

the success of the investment, i.e. the renovation of the building. These factors

include economic parameters (e.g. VAT, tax rate), financing parameters (e.g. loans),

cost parameters (e.g. CAPEX of the technologies to be installed) and real estate

parameters (e.g. land acquisition cost).

Specifications for Interoperability

31

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.5.3 Protocols

Read access to components

Target

component
Access description Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

INTEMA Requests INTEMA to

check for status

updates

HTTP JSON Daily Internal

Digital

Building

Logbook

Access to EMS

sensors/performance

data

HTTP JSON Hourly Confidential

Access by other components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

INTEMA Push building

parameters and

renovation

scenarios

definition

HTTP JSON On demand Internal

Write access to components

Target

component
Access description Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

Digital

Building

Logbook

Store LCC/LCA

reports/information

HTTP JSON On demand Internal

3.1.5.4 APIs

In the context of the InCUBE project, VERIFY will provide a minimal RESTful API to allow access to its

data model. For this purpose, the API specifications described below will be supported and provided

to third parties.

GET requests

The following GET resources will be available:

 /api/buildings – Returns the list of buildings that are stored in VERIFY of an authenticated

user. The list will contain basic, internal and non-confidential information, e.g. the name of

the project and a global identifier.

 /api/buildings/{building_id} – Returns details about the building with building _id. This

endpoint may include confidential information thus only authenticated entities will be able

to access it.

 /api/buildings/{building_id}/analysis_results – Returns the results of the environmental and

costing analysis KPIs for the buidling with building_id for authenticated users.

POST requests

The following POST resources will be available:

/api/buildings – Receives the definition of a project and creates the required resources in the local

database in order to store and represent the input building.

Specifications for Interoperability

32

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.6 InCUBE Planning Guide

The InCUBE Planning Guide (P-GUIDE) software solution is able to evaluate various renovation

scenarios and propose the optimal scenario during the renovation design phase based on different

Key Performance Indicators. These indicators are related to aspects such as cost, retrofitting time,

smart readiness, environmental and energy impact, and others. One of the advantages of the

solution is its high configurability, which allows it to adapt to different cases and users’ preferences.

3.1.6.1 Architecture

The P-GUIDE consists of two parts: a back-end engine that handles input data and performs the

calculations, and a web-based user interface. The former makes use of external HTTP REST APIs and

also provides HTTP REST API for data exchange with other components and the user interface.

3.1.6.2 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Digital

Building

Logbook

Retrieve

properties of

products, and

dynamic

information

(current

situation).

Store and re-

use output

results.

Retrieve

outputs of

modelling and

evaluation

tools of

InCUBE

(INTEMA)

HTTP JSON On-demand Internal

Modular

BIM/CIM

Platform

Retrieve

properties of

products,

characteristics

of the

buildings

HTTP IFC On-demand Internal

Eclipse

SensiNact

Platform (DiTi)

Sensory data

provider

HTTP JSON Periodic Internal

VERIFY Environmental

and cost

indicators

values

HTTP JSON On-demand Internal

INTEMA Energy

indicators

HTTP JSON On-demand Internal

Specifications for Interoperability

33

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Job

Scheduling

Optimizer

Optimal

sequence of

interventions

and

retrofitting

time

HTTP JSON On-demand Internal

Lean

Construction

Platform

Environmental

indicator

HTTP JSON On-demand Internal

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Digital

Building

Logbook

Store outputs HTTP JSON Periodic Internal

3.1.6.3 APIs

P-GUIDE HTTP APIs have a structure similar to the one that is followed in the next indicative example.

Description: Posts a JSON containing essential information about a KPI’s indicator for a specific

renovation scenario of a demo site.

Method: POST http://<server_address>/dssinputscenarios/postValuePerIndicatorPerScenario

Request message body example:

Where:

o "Indicator" : Id of the indicator

o "Unit" : Measurement unit of the indicator

o "Criteria" : Boolean criteria of the indicator, 0 if the bigger the value the better, 1 for the

opposite. For example the “CO2 emission savings” indicator would take a Criteria value of

0, whereas the “Overall project waste” indicator would take a Criteria value of 1

o "Value" : Value of the indicator

o "Scenario" : Id of the Scenario in which the indicator is metered [1,2,3]

o "SiteId" : Id of the pilot of the Scenario. 1 for Spanish Demo Site, 2 for Italian Demo Site, 3

for Dutch Demo site

{

"Indicator": 3,

"Unit": "%",

"Criteria": 1,

"Value": 36.74,

"Scenario": 1,

"SiteId": 1

}

Specifications for Interoperability

34

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.7 Resilience Dashboard

The purpose of the dashboard will be to visualise the technological elements (described in the

various paragraphs), in terms of their positioning on the map, operating status and current activity.

Specifically, it returns possible alarms on the map in order to be able to proceed as quickly as

possible to deal with an emergency due to the state of health of a worker, for example. The

dashboard is not only a dynamic visualisation of the technological elements of the site, but also a

network for querying daily reports in terms of verified alarms, near misses, etc. These will be

displayed in PowerBI as a useful result for other tools.

Figure 11 Resilience Dashboard

3.1.7.1 Architecture

It will be structured as PowerBI.

Specifications for Interoperability

35

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.7.2 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Lean

Construction

Platform

Renovation

status

HTTP JSON Periodic Internal

Modular

BIM/CIM

Platform

Possible

updates of

buildings

description

HTTP .ifc Periodic Internal

Access by other components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

AR/VR

Training Suite

Access to

reports and

simulated

situations

HTTP .pdf /

JSON

Periodic Internal

Lean

Construction

Platform

Renovation

status

HTTP JSON Periodic Internal

Job Scheduler

Optimizer

 Internal

PPE

Monitoring

System

Push

alerts/reports

from safety

components

HTTP /

MQTT

JSON Real-time Internal

Anti-Collision

System

Push

alerts/reports

from safety

components

HTTP /

MQTT

JSON Real-time Internal

Area

Boundary

System

Push

alerts/reports

from safety

components

HTTP /

MQTT

JSON Real-time Internal

Environmental

Monitoring

System

Periodic

reports of

statistical

analysis

HTTP JSON Periodic Internal

Waste

Tracking and

Management

Push reports HTTP JSON Periodic Internal

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Digital

Building

Logbook

Store reports

(human

readable)

HTTP JSON Real-time Internal

Eclipse

SensiNact

Platform (DiTi)

Notification of

alerts

Store reports

(values)

HTTP /

MQTT

JSON Real-time Internal

Specifications for Interoperability

36

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.7.3 APIs

It will draw on data available via REST API on the Smart Track platform and some excel or csv files

containing simulated data for sensors and waste.

3.1.8 AR/VR Training Suite

The AR/VR Training Suite, part of the InCUBE Retrofitting Guide (R-Guide), utilises Augmented Reality

technology for providing “off-line” and “on-the-job” training to workers. The training topics cover

different aspects of renovation work, such as the use of new technologies and the installation of

novel equipment, as well as the application of construction techniques. Furthermore, the AR/VR

Training Suite can be used by workers in order to receive online assistance from more experienced

workers or managers, upon request. The integration of the AR/VR Training Suite with the Resilience

Dashboard allows for the display of information about installed devices and sensors, and the

forwarding of notifications or alerts to be visible within the AR environment. The main objectives

are to increase workers’ safety and satisfaction, and accelerate the learning process compared to

traditional techniques.

3.1.8.1 Architecture

The suite comprises a set of applications that are either web-based or for mobile devices (i.e.,

smartphones, tablets, and HoloLens devices).

 A web application allows the user to author tutorials for procedures such as assemblies and

installations of novel products related to retrofitting.

 A web server is responsible for establishing real-time communication between participants

in the renovation works.

 A mobile application can display tutorials in AR on site, display information about monitored

attributes in the building and planned activities, and allows a worker to initiate real-time

communication with a colleague in order to get assistance.

3.1.8.2 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Resilience

Dashboard

Location and

status of

installed

sensors/devices

per space

HTTP JSON On-demand Internal

Renovation

Marketplace

Online

assistance

communication

HTTP /

WebRTC

JSON On-demand

/ Real-time

Internal

Digital

Building

Logbook

Training status

and history per

user

HTTP JSON On-demand Internal

Modular

BIM/CIM

Platform

3D

representation

of buildings

and assets

HTTP JSON Periodic Internal

Specifications for Interoperability

37

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Access by other components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of

collection

Data

sensitivity

Renovation

Marketplace

Online

assistance

communication,

Training status

HTTP /

WebRTC

JSON Real-time Internal

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Digital

Building

Logbook

Store training

reports

HTTP JSON Periodic Internal

Renovation

Marketplace

Online

assistance

communication

HTTP JSON Periodic Internal

3.1.8.3 APIs

HTTP REST API is provided for internal data exchange among the applications of the AR/VR Training

Suite (e.g. for managing tutorials and storing them to the DBL in the appropriate data format).

e.g. HTTP POST /addTrainingTutorial

HTTP POST /deleteTrainingTutorial

HTTP GET /getTrainingTutorial

Furthermore, a WebRTC server is included for the implementation of the WebRTC protocol by

maintaining websocket connections and keeping the peers synchronised.

The AR/VR Training suite makes use of HTTP APIs of other InCUBE components in order to retrieve

or store information, e.g.:

 Digital Building Logbook for retrieving information about users, products, and training

material and storing training report events.

 Modular BIM/CIM Platform for retrieving BIM models of buildings and assets.

 Resilience Dashboard for retrieving data about sensors/devices configurations and their

values.

3.1.9 Lean Construction Platform

3.1.9.1 Architecture

Lean Construction Platform is part of WINER, along with the Job Scheduling Optimizer (JSO). Both

tools complement each other to provide the supervision and optimization of the entire lifecycle of

the building renovation process, generating the optimal construction/renovation actions sequence

in terms of time, cost, and safety. Since these tools, along with P-GUIDE, share several input

parameters to generate the actions sequence, there has been discussion about establishing a single

Specifications for Interoperability

38

Document ID: [101069610] [InCUBE] – D3.1 (v1)

form. This would allow the user to fill it out only once, and then it would be shared following the

guidelines indicated in Section 2.2. However, the specifics of how this exchange will be carried out,

as well as the format or syntax, have not yet been defined.

Additionally, there is an intention that Lean Construction Platform retrieves information from the

BIM/CIM platform and R-GUIDE, which is also pending further specification. From the BIM/CIM

platform, the plan is to obtain information related to the renovation process: generated waste,

transportation, etc. On the other hand, from the R-GUIDE, the aim is to gather information from

historical events that may be related to safety on the construction site.

3.1.9.2 Protocols

Read access to components

The Lean Construction Platform will access the BIM\CIM platform and the R-GUIDE when required to

compute or update the recommended sequence of actions or some parameter to be displayed in

the interface. It will not proactively retrieve data from any component.

Target

component
Access

description
Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

Resilience

Dashboard

Access

history of

events

HTTP REST\

DB Queries

To be

defined

Non-periodic Internal

Modular

BIM/CIM

Platform

Access BIM

models
HTTP To be

defined

Non-periodic Internal

Access by other components

As previously mentioned, the Lean Construction Platform (LCP) will share information with the Job

Scheduling Optimizer (JSO) and the P-GUIDE, as they share numerous user-input parameters. They

also may share results related to the performance of the recommended action sequence.

Client

component
Access

description
Access

protocol
Data Format

/ Syntax

Frequency

of collection

Data

sensitivity

Job

Scheduler

Optimizer

Information

provided by

the user

HTTP REST /

MQTT
To be

defined

Non-periodic

P-GUIDE Information

provided by

the user

HTTP REST /

MQTT
To be

defined

Non-periodic

Specifications for Interoperability

39

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Write access to components

Similarly, the LCP will be able to share information with the JSO and P-GUIDE regarding user-entered

parameters or sequence of actions.

Target

component
Access

description
Access

protocol
Data Format

/ Syntax

Frequency

of collection

Data

sensitivity

Job

Scheduler

Optimizer

Information

provided by

the user

HTTP REST /

MQTT
To be

defined

Non-periodic

P-GUIDE Information

provided by

the user

HTTP REST /

MQTT
To be

defined

Non-periodic

3.1.9.3 APIs

As mentioned above, the communication between the LCP, the JSO and the P-GUIDE has yet to be

defined. However, the LCP will probably be provided with a RESTful API to allow access to this

information. The definition and implementation are in process at the time of writing this deliverable.

3.1.10 Job Scheduling Optimizer

3.1.10.1 Architecture

The Job Scheduling Optimizer (JSO) is an online tool, generating the optimal construction/renovation

actions sequence, in terms of time and cost efficiency, according to the selected constraints and

preferences (e.g., tenant’s disruption, available workers, precedence relations between activities).

JSO has a fairly simple architecture which is presented in Figure 12. It consists of a web application

and a database where its local data are stored. The users can interact with the application through

its graphical user interface in order to set up renovation plans and perform scheduling. The task of

scheduling is assigned to another in-house web service which utilizes scheduling algorithms on a

set of jobs to be scheduled and returns the results to the web application. The communication is

realized using the REST API that the scheduling service provides. Finally, JSO has API capabilities on

its own, thus, external tools can request data considering the renovation plans and their scheduling.

Figure 12 JSO Architecture

Specifications for Interoperability

40

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.10.2 Data Model

Figure 13 JSO Data Model

JSO represents its data using the following model, shown in Figure 13:

 User: The representation of a user of JSO. Each user may own/manage 0 to multiple

renovation plans.

 Renovation plan: Represents the renovation plan that will be applied to a building. A

renovation plan may include one or more Work Packages.

 Work package: Represents a set of jobs that will be performed during the renovation plan.

Each work package is an isolated set of jobs that are closely related to one another. The

work packages are used for better organization of jobs in a renovation plan. Each work

package may have one or more activities/jobs.

 Activity / Job: Represents a physical activity that will be performed on the building during

the renovation plan. Each activity/job has several characteristics that are useful during the

planning, e.g. its duration and the number or workers required.

 Constraints: Represents constraints that are applied during the scheduling and consider the

available resources of the building, owners or construction companies. A renovation plan

may have none or many constraints. A constraint may be the limited available budget per

period, which might prevent some jobs from taking place.

 Schedule: Represents the calculated schedule for a renovation plan. The schedule indicates

the time point an activity/job should start being processed and how many days it will last.

Moreover, it contains general statistics about the schedule, e.g. the total duration. A

renovation plan may have none or many schedules, since different schedules may be

calculated to test different constraints, methods or optimization factor.

3.1.10.3 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Lean

Construction

platform

Internal

information

about

scheduled

actions

HTTP JSON On demand Internal

P-GUIDE

(Dynamic

Decision-Making

Tool)

Retrieve the

optimal

renovation

scenario

HTTP JSON On demand Internal

Specifications for Interoperability

41

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Resilience

Dashboard

Value chain

processes to

be scheduled

HTTP JSON On demand Internal

Access by other components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

P-GUIDE Retrieve the

optimal

renovation

scenario

HTTP JSON On demand Internal

Lean

Construction

Platform

Internal

information

about

scheduled

actions

HTTP JSON On demand Internal

Resilience

Dashboard

Value chain

processes to

be scheduled

HTTP JSON On demand Internal

Write access to components

Besides the Digital Building Logbook, JSO will only communicate with the Lean Construction

platform in the context of the WINER tool. In more detail, JSO will provide LCP with jobs data and

several KPIs considering the finalized schedule.

Target

component
Access

description
Access

Protocol
Data

Format

Frequency of

collection

Data

sensitivity

Lean

Construction

platform

Internal

information

about actions

to be

scheduled

HTTP JSON On demand Internal

Digital Building

Logbook

Optimal

sequence of

actions of

various

scenarios

HTTP JSON On demand Internal

3.1.10.4 APIs

In the context of the InCUBE project, JSO will provide a minimal RESTful API to allow access to its

data model. For this purpose, the API specifications described below will be supported and provided

to third parties.

GET requests

The following GET resources will be available:

 /api/renovation_plans – Returns the list of renovation_plans that are stored in JSO for the

authenticated user. The list will contain basic, internal and non-confidential information, e.g.

the name of the project and a global identifier.

 /api/renovation_plans/{renovation_plan_id} – Returns details about the renovation_plan with

renovation_plan_id, including the list of jobs and their details. This endpoint may include

confidential information thus only authenticated entities will be able to access it.

Specifications for Interoperability

42

Document ID: [101069610] [InCUBE] – D3.1 (v1)

 /api/renovation/{ renovation_plan_id}/schedule – Returns the results of the scheduling,

including the detailed schedule and the calculated KPIs for the project with

renovation_plan_id.

POST requests

The following POST resources will be available:

 /api/renovation_plans – Receives the definition of a renovation_plan and creates the required

resources in the local database in order to store and represent the input project.

3.1.11 Renovation Marketplace

The InCUBE Renovation Marketplace makes digitally available the innovative products, processes

and business models related to deep renovation of buildings. In particular, information on novel

envelope and construction materials solutions, energy systems, advanced HVAC systems,

retrofitting techniques, and training material will be included. The Renovation Marketplace is a web-

based tool openly accessible. Various stakeholders such as engineers, workers, technology

developers, and building owners, will be able to communicate and react among each other. In

addition, users will be able to monitor the overall renovation activities flow as well as buildings

operations. Users who take part in the renovation works will be able to enhance their capacity on

deep-renovation related processes and also provide assistance to workers on site. One of the main

characteristics of the tool is that it can be used by third parties, allowing them to both access InCUBE

results and present their own technologies.

3.1.11.1 Architecture

The Renovation Marketplace is a web application that is consisted of the back-end part and the user

interface part (front-end). The former exposes HTTP web services that are utilised by the user

interface in order to retrieve and send the data. Moreover, it accesses HTTP APIs that are provided

by other InCUBE tools.

3.1.11.2 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Digital

Building

Logbook

Information

on renovation

works.

Information

on materials,

products, and

processes

HTTP JSON On demand Internal

Module

BIM/CIM

Platform

Retrieve the

list of

available BIM

assets

HTTP JSON On demand Internal

Specifications for Interoperability

43

Document ID: [101069610] [InCUBE] – D3.1 (v1)

AR/VR

Training Suite

Training

status data

HTTP JSON On demand Internal

Access by other components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of

collection

Data

sensitivity

AR/VR

Training Suite

Online

assistance

communication

HTTP /

WebRTC

JSON On demand

/ Real-time

Internal

Write access to components

Target

component
Access description Access

Protocol
Data

Format

Frequency

of

collection

Data

sensitivity

Digital

building

Logbook

Addition of

descriptions of new

products/technologies

HTTP JSON On demand Internal

AR/VR

Training Suite

Online assistance

communication

HTTP REST

/ WebRTC

JSON On demand

/ Real-time

Internal

3.1.11.3 APIs

Indicative examples part of the HTTP REST API provided by the back-end of the Renovation

Marketplace are the following:

HTTP GET /marketplace/getProductInformation

HTTP POST /marketplace/addProduct

HTTP POST /marketplace/addProcess

HTTP POST /marketplace/addTechnologyDescription

HTTP POST /marketplace/addNewsArticle

HTTP POST /marketplace/addConnection

HTTP GET /marketplace/getConnections

3.1.12 Energy Cloud EMS

This solution applies the performance of an industrial SCADA system to the Building Energy

Management, being able to collect Energy Data from many different hardware devices and enabling

to visualize the Energy consumption the building in an intuitive and simple way via a 3D BIM model.

CIRCE ENERGY CLOUD will show in a multiplatform and comprehensive way the energy consumption

of the shareholders, providing in a 3D environment energy information of every user. Through

InCUBE an innovative approach to the BEMs will become available, empowering the non-technically

trained citizens via 3D BIM intuitive platforms, and providing real energy estimations of their day-

by-day appliances, just with one electricity meter.

Specifications for Interoperability

44

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.12.1 Architecture

Figure 14 shows the architecture of the EMS (Energy Cloud System) which is composed of three main

parts: sensor, gateway and broker.

The AM307(L) series is a compact indoor environment monitor that measures temperature,

humidity, light, CO2 concentration, TVOC, barometric pressure and motion. The data is displayed

on the screen in real time, helping to measure indoor environment and comfort. The sensor data is

transmitted via LoRaWAN technology. By combining Milesight's LoRaWAN gateway and Milesight IoT

Cloud, all sensor data can be managed remotely and visually.

UG65 is a robust indoor LoRaWAN gateway, has a line-of-sight of up to 15km and can cover about

2km in an urban environment, which is ideal for certain indoor applications. The plurality of

connections of this equipment makes it interesting for the development of the project. Ι n our case,

the communication protocol to be used is MQTT.

An MQTT (Message Queuing Telemetry Transport) broker is a server that facilitates communication

between devices using the MQTT protocol. MQTT is a lightweight and efficient messaging protocol

designed for resource-constrained devices such as sensors and actuators on the Internet of Things

(IoT).

The MQTT broker acts as an intermediary between devices that send messages (called clients) and

devices that receive those messages. Its main function is to receive messages from the clients and

route them correctly to the target clients.

Some key features of an MQTT broker include:

Publish/Subscribe: MQTT uses a publish/subscribe model, where clients can publish messages to

specific "topics" and subscribe to topics of interest. The broker ensures that messages are delivered

to customers subscribed to those topics.

Message Retention: MQTT brokers can retain the last message posted in a topic, which means that

a new subscriber can receive the most recent message as soon as they subscribe to that topic.

Quality of Service (QoS): MQTT supports QoS levels that determine the level of message delivery

guarantee. Levels range from 0 (unconfirmed delivery) to 2 (guaranteed delivery).

Persistence: Some MQTT brokers can store messages persistently, which means that messages are

not lost even if a client or the broker itself is rebooted.

Security: MQTT brokers often include security mechanisms, such as authentication and encryption,

to protect communication between clients and the broker.

Specifications for Interoperability

45

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 14 Energy Cloud System Architecture

3.1.12.2 Protocols

Inputs

Input Origin Access description Access

Protocol

Data

Format

Frequency of

collection

Data

sensitivity

Read

format

Electric

consumption

Electric consumption

via Datadis

MQTT Json Daily Confidential MQTT

Gas

consumption

Gas consumption in

bills

Manually Json Monthly Confidential MQTT

Comfort devices Comfort data MQTT Json 15 min Confidential MQTT

Modular BIM/CIM

Platform

Building information

and 3D structure

HTTP IFC /.rvt

(to be

defined)

Once Internal MQTT

Read access to components

Target

component

Access description Access

Protocol

Data

Format

Frequency of

collection

Data

sensitivity

Modular BIM/CIM

Platform

Access BIM models HTTP BIM/CIM

files

Periodic Internal

3.1.13 Smart Building EMS (S-BEMS)

The Smart Building EMS distributes its intelligence following an edge-to-cloud architecture where

the edge element equipped with intelligence is provided by TERA, while the cloud element

equipped with intelligence corresponds to the AI algorithms developed by FBK.

The main edge element is the Beeta
TM

 Box (hereinafter BeetaBox) that is an edge computer -

multiprotocol gateway - designed for indoor IoT ecosystems. It is based on LINUX Embedded

platform, which allows implementing software solutions which can run in a standalone mode or

interfaced to remote web services. The use of standardized protocols and communication interfaces

makes this electronic control unit an unprecedented multi-protocol gateway and allows full

configurability, modularity, and scalability of BeetaBox, whose embedded SW can be upgraded

Specifications for Interoperability

46

Document ID: [101069610] [InCUBE] – D3.1 (v1)

remotely (OTA). This feature is of great value for the maintenance and upgrading of the BeetaBox

to ensure that the number of devices and protocols supported are compatible and aligned with the

market evolutions.

It can be used in combination with third party software platforms/tools/frameworks for the

implementation of an integrated management and control systems, in applications like Smart Home

(Behind the meter), Smart Metering, asset management, (Building/Energy Management System),

Smart Grid services, security, automation.

BeetaBox is an edge computer characterised by a range of factures, performances and

communication interfaces that is one of a kind, being however able to be customise for different

applications, configuring its equipment from the top of the range up to ad-hoc versions (outfitting).

BeetaBox is based on ARM Cortex A7 processor, with several embedded IoT wireless modules (Wifi,

802.15.4, Bluetooth, Z-wave, WM-Bus 169MHz, NB-IoT or 868MHz LoRaWAN) and wired connectivity

like RS485 (e.g., Modbus, Sunspec and others for photovoltaic/battery management inverters etc.),

Gigabit Ethernet (Bacnet, Modbus, KNX, Daikin, etc.), USB, S0 and dedicated I/O (Dry Contact, Open

Collector).

Moreover additional 3 USB ports can be used to easily expand the BeetaBox to include modules like

GPRS/UMTS/4G, etc. The available I/Os, make it possible also to get data from smart meter directly

or to drive load or boiler through relay modules.

BeetaBox has also internal devices such as sensors for Temperature, relative humidity and air

pressure, microphones, speakers and an optional Trusted Platform Module (TPM 1.2) soldered chip;

sensors can be used in combination to visual and acoustic embedded actuators for smart feedback

to the users.

Specifications for Interoperability

47

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 15 BeetaBox IoT Edge Computing Gateway Front Face

Figure 16 BeetaBox IoT Edge Computing Gateway Rear Face

Specifications for Interoperability

48

Document ID: [101069610] [InCUBE] – D3.1 (v1)

The BeetaBox is able to receive and store the data provided by the smart meters “1G” and “2G”

installed in by e-Distribuzione (the main Distributor in Italian electricity grid and in some other

countries) via Power Line, connected via USB port:

- in "A" band, when connected to devices such as the e-distribution "Smart Info" (or other

devices equipped with an e-distribution "MOME" card, such as the Beeta Power in the MOME

version), communicating with the first-generation counters (also called "1G", for example

GEM, GEMIS) or even with 2G generation meters (2.1), enabled to send data on band "A";

- in band "C", when connected with devices such as the Beeta Power "2G" version, in this case

communicates only with the "second generation" meters, or "2.0 electronic meters" or "smart

meter 2.0", or simply "2G" (e.g., models CEG2, CE2G, "gen2"); it should be noted that, for

those of the second generation, new features will be activated which are currently being

tested.

As a powerful edge computer, there are several options in using BeetaBox:

a. without SW: customer/partner installs Linux and other SW tools;

b. equipped with pre-installed Linux arranged and tuned by us (ArmBian); several open-source

software tools and frameworks can be used, like NodeRed, Home Assistant etc.

c. equipped with pre-installed Linux arranged and tuned by us (ArmBian) plus a middleware

(OSGI compliant) customized by TERA and some "drivers" developed by Tera;

d. equipped with pre-installed Linux arranged and optimized by us (ArmBian) plus some

middleware (OSGI compliant) customized by TERA and some "drivers" developed by Tera,

including MQTT configured to send data to an MQTT broker (a sort of "IoT" platform " that

some potential partners have);

e. equipped with pre-installed Linux arranged and optimized by us (ArmBian) plus “FIN

FRAMEWORK” (by J2 Innovation- A Siemens Company); thanks to FIN framework is

compliant with the open-source initiative Project Haystack to streamline working with data

from the Internet of Things.

In this initial pre-monitoring phase, the gateway will only act as a data logger – a dedicated feature

designed for InCUBE project purposes since no direct communication to the destination cloud

platform will be made available for the pre-monitoring phase. Retrieved data will be stored inside

its 128 GB microSDHC internal memory.

Only in 2025 collected data will be directly sent to the cloud-based software platform developed by

EVOLVERE.

The acquired data from the IoT gateway acting as a data logger could be exported at the next file

extensions: *.json. To facilitate project partners data manipulation, TERA will develop a software

module for parsing *.json data file to *.csv or *.xlsx file.

3.1.13.1 Data Model

The data recorded will be used for training the predictive models (forecasting of energy

consumption and RES production, with special emphasis given on the maximization of self-

consumption). Once the EVOLVERE platform will be available, the results of the model can return to

the BeetaBox using standard MQTT protocol.

Specifications for Interoperability

49

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.13.2 Protocols

Read access to components

Target

component 
Access

description 
Access

Protocol 
Data Format Frequency of

collection

Data

sensitivity

Digital

Building

Logbook 

Access to EMS
sensors/indoor
comfort data

MQTT JSON

To be defined internal

P-GUIDE Information

provided by

the user

MQTT JSON

To be defined internal

Multimeter Energy data

from

Cuminetti

Teather

Modbus JSON

15 minutes internal

Smart plug Appliances

energy data

Zwave JSON

15 minutes internal

Multiparamter

sensors

Indoor comfort

data

Zwave JSON

15 minutes internal

Write access to components 

Target

component 
Access

description 
Access

Protocol 
Data

Format

Frequency of

collection

Data sensitivity

Digital Building

Logbook 

Propagates

events from IoT

sensors and

smart devices 

MQTT  JSON To be defined internal

P-GUIDE Information

provided by the

user

MQTT  JSON To be defined internal

EvoDistrict Energy and

comfort data

from field

sensors

MQTTS JSON

15 minutes internal

3.1.13.3 APIs

TERA will provide a RESTful API to allow third parties read/write data from IoT edge gateway via its

internal Device Configuration Platform software. The current version API v1 (/api/v1) containing

initial references to the following features:

 Auth /auth

 Super /super

 System /system

 MQTT /mqtt

 Logs /logs

Furthermore, it is expected that some data (to be identified) will be updated in real time over web

socket.

Specifications for Interoperability

50

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.14 District EMS (EvoDistrict)

EvoDistrict is a Software-as-as-a-service cloud platform that manages the distributed energy

resources that fall within the demo site #1 of the INCUBE project, i.e. the Santa Chiara District,

located in the city of Trento, Italy. At present, these distributed resources are renewable sources

generators (e.g. PV plants) and electrical loads (offices, meeting rooms, gyms, etc.); storage systems

(e.g. Li-ion batteries) and heat pumps may be included later in the INCUBE project. EvoDistrict aims

to transform and manage demo site #1 as an energy community, in accordance with the Italian

regulatory framework currently in force.

3.1.14.1 Architecture

The EvoDistrict architecture consists of three parts: edge, gateway and cloud platform as shown in

Figure 17 a). This architecture applies to sensors and meters in general, but also to the BeetaBox

IoT Edge Computing Gateway produced by partner Tera. The sending of telemetry data (e.g. energy

and power measurements) from the edge to the EvoDistrict platform occurs securely and reliably:

1. Edge to cloud: sensors, smart meters and photovoltaic plants communicate locally with

Eugenio gateway (Figure 18) via proprietary application protocols or via MQTT protocol on

the local Wi-Fi network. Eugenio gateway transmits data to EvoDistrict using MQTT protocol.

2. Cloud to cloud: edge devices transmit data to their manufacturers' cloud platforms and the

latter transfers the data to EvoDistrict via third-party APIs or MQTT protocol.

Security in the scenarios described above is met by the application of the three key principles of

cybersecurity (CIA triad):

 Confidentiality: the confidentiality (privacy) of the data is protected by mean of

authentication and double encryption techniques which inhibit access to unauthorized users.

Contextualizing in EvoDistrict, edge-to-cloud communication adopts the MQTTs protocol

(secure version of the MQTT protocol based on TLS), while cloud-to-cloud communication

adopts the MQTTs or HTTPs protocol. In both cases, authentication is mandatory.

 Integrity: data protection from unauthorized external tampering in EvoDistrict is guaranteed

by authentication policies that monitor access attempts, by authorization mechanisms

according to the "Least Privilege" (PoLP) principle, and by anti-intrusion systems.

 Availability: this principle states that data must be provided when a resource put the request,

and no service interruption can compromise the data availability. In EvoDistrict, concepts of

hardware, network and software redundancy as well as disaster recovery and backup plans

are applied as countermeasures to protect data availability.

The architecture in Figure 17a) changes when photovoltaic plants and smart meters are considered.

In fact, the measurements on the photovoltaic plants are shared via a cloud-to-cloud

communication, between the cloud infrastructure of the photovoltaic inverter manufacturer and the

EvoDistrict platform, as shown in the Figure 17b). This new architecture is possible on condition

Specifications for Interoperability

51

Document ID: [101069610] [InCUBE] – D3.1 (v1)

that the photovoltaic inverter manufacturer is among those manufacturers that have signed a

specific confidentiality agreement with Evolvere.

Figure 17 EvoDistrict Architecture

Figure 18 Eugenio gateway

On the contrary, smart meters send the local measurements directly to EvoDistrict platform, as

shown in Figure 17c). More precisely, the smart meter shown in Figure 19 communicates via power

line communication with the local DSO meter, using the so-called Chain 2 protocol, and receives the

measurements of the energy withdrawn/injected at the point of delivery. Then, the smart meter

sends directly these measurements to the EvoDistrict platform, via local Wi-Fi and MQTT protocol.

Specifications for Interoperability

52

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 19 Smart Meter

3.1.14.2 Protocols

Write access to components via Eugenio Gateway

Target

component
Access

description
Access

Protocol
Data

Format
Frequency of

collection
Data

sensitivity
Data from

Smart meters

(at the point of

delivery)

energy

withdrawn and

injected

MQTTs JSON 15 minutes Internal

Data from

Sensor, meters,

BeetaBox

Indoor/outdoor

parameters
MQTTs JSON To be defined Internal

Data from PV

plants
Energy

produced
MQTTs JSON To be defined

Internal

Write access to components via cloud-to-cloud integration

Target

component
Access

description
Access

Protocol
Data

Format
Frequency of

collection
Data

sensitivity
Data from

Smart meters

(at the point of

delivery)

energy

withdrawn and

injected

HTTPS JSON 15 minutes Internal

Data from

Sensor, meters,

BeetaBox

Indoor/outdoor

parameters
HTTPS JSON To be defined Internal

Data from PV

plants
Energy

produced
HTTPS JSON To be defined

Internal

3.1.14.3 APIs

EvoDistrict will provide a RESTful API to allow third parties read/write access to the database. At the

moment, it is not known which data will need to be shared therefore the specifications of the RESTful

API have not yet been defined.

The predictive models implemented (forecasting of energy Consumption/self-consumption and RES

production) will use all the available data collected by the EvoDistrict. More in detail, data will be

Specifications for Interoperability

53

Document ID: [101069610] [InCUBE] – D3.1 (v1)

extracted using the implemented API’s and used for training the models in a separate ad-hoc

ecosystem (GPU-cluster based). Once validated, the models will be uploaded to the cloud and a

dedicated API will serve the results of such models writing the forecasted values as a standard

component. Such data can be, for example, retrieved by the BeetaBox and consumed locally.

3.1.15 PPE Monitoring System

The helmets will be equipped with accelerometer sensors to understand the position of the worker

and possibly transmit an alarm. These sensors are not only a warning system but also a way of

checking that the helmet is used correctly according to the regulations in force. All the sensors are

connected to the dashboard (see description) so both the position of the worker and the alarms

detected will be recorded and collected in an event register.

3.1.15.1 Architecture

The system is composed of the following elements:

 N Anchor / Beacon device with periodic BLE signal transmission functionality to be installed

in indoor areas. Their purpose is to function as an indoor satellite for the localization of

the emergency event generated by the WeTAG.

 N small DPI Tag devices to be installed on the DPI and with periodic BLE signal

transmission functionality

 A WeTAG device wearable by the operator on the ground

The WeTAG is equipped with:

 BLE receiver capable of picking up the signal from the indoor localization Anchors and

from the BLE Tags

 microcontroller that implements event localization, detection and forwarding algorithms

 GPS receiver for outdoor localization

 WiFi transceiver to communicate events to the server

 2G/2.5G transceiver to communicate events to the server

The WeTAG allows you to alert the operator when:

 An involuntary or voluntary man down condition is detected

 a prolonged lack of at least one of the PPE Tags worn is detected

The WeTAG stops alerting the operator when:

 the radio signal of the missing DPI Tag returns to being perceived according to the set

parameters

 the man down condition is manually restored

The WeTAG works as a signal concentrator and allows the forwarding of events to the server via

2G / 2.5G or WiFi connectivity and through specific APIs. Figure 20 shows the block diagram of

the system:

Specifications for Interoperability

54

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 20 Block Diagram of PPE Monitoring

3.1.15.2 Protocols

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Resilience

Dashboard

Reports on

safety rules

compliance

HTTP .pdf /

JSON

Periodic Internal

3.1.15.3 APIs

The following API has been defined for downloading data from the SmartTrack platform:

GET(POST) /events

From: date

To: date

Source: source_type

Type: event_type

Location: string (it may be a concatenation of location-floor-area)

Floor: string (it may be a concatenation of location-floor-area)

Area: string (it may be a concatenation of location-floor-area)

Response:

 [events] (with all admissible values)

Specifications for Interoperability

55

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.1.16 Anti-Collision System

Figure 21 Anti-Collision System

The anti-collision system (Figure 21) will be adapted to the only operating machine on the site,

namely the tower crane. This is because after the inspection we considered monitoring the loading

area of the crane by sensing the boom and the loading system for the danger of suspended loads,

so when manoeuvring it will detect the presence of workers in areas at risk of falling loads.

3.1.16.1 Architecture

The system is composed of the following elements:

 A tag / beacon device to be applied to the CRANE and which allows you to detect the

movement of the load in two directions, in particular and equipped with:

o accelerometer to detect if the moving part is moving

o BLE transmitter (ptx + 6.2 dBm) ON/OFF controlled by the accelerometer

o BLE transmitter (ptx + 6.2 dBm) ON connectable for its reprogramming

o CR2450 lithium battery which allows it to work for years

o industrial 3M double-sided tape or buttonholes to be applied using cable ties

 An architecture of at least 4 UWB Anchors in the external loading/unloading area with related

support and power poles

 WiFi network with network output to a defined endpoint near the loading/unloading area.

Request the Municipality for this necessary aspect.

 A WeTAG device wearable by the operator on the ground and equipped with:

o BLE receiver capable of picking up the signal transmitted by the tag / beacon

o microcontroller that implements event localization, detection and forwarding

algorithms

o UWB transceiver to communicate with the Anchor UWB architecture

o WiFi transceiver to communicate events to the server

The proposed system allows the operator to be alerted in the field when he is inside the prohibited

polygon and only if, at the same time, the crane is moving.

Specifications for Interoperability

56

Document ID: [101069610] [InCUBE] – D3.1 (v1)

To detect when the crane is moving, a tag is applied to the moving part of the crane which, as it

moves, will produce some vibration / movement on the tag, activating it. The sensitivity of tag

vibration/motion detection is configurable via BLE.

Below are the functional logical steps:

1. Creation of the logical geo-fencing polygon and insertion within the WeTAG

2. When the tag detects continuous vibrations / movements for n seconds (parametrizable) it

transmits a periodic BLE signal for a time window of m seconds (parametrizable).

3. The WeTAG calculates its position periodically using the Anchor UWB architecture (the rate

can be parameterised and is between 10s and 100ms) and continuously checks whether:

a. is located within the geo-fencing polygon

b. if it senses the BLE signal transmitted by the tag.

The WeTAG alerts the operator (sonic / vibrating / visual feedback) when:

 both conditions a and b are verified

The WeTAG stops alerting the operator when:

 condition a or b or both are not met

Each change of state produces the recording of an event which is forwarded by the WeTAG via a

specific API and WiFi network.

Figure 22 shows the block diagram of the system:

Figure 22 Block Diagram of Anti-Collision System

3.1.16.2 Protocols

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Resilience

Dashboard

Reports on

detections of

risk of

collisions

HTTP /

MQTT

.pdf /

JSON

Periodic Internal

3.1.16.3 APIs

The following API has been defined for downloading data from the SmartTrack platform:

GET(POST) /events

From : date

Specifications for Interoperability

57

Document ID: [101069610] [InCUBE] – D3.1 (v1)

To: date

Source: source_type

Type: event_type

Location: string (it may be a concatenation of location-floor-area)

Floor: string (it may be a concatenation of location-floor-area)

Area: string (it may be a concatenation of location-floor-area)

Response:

 [events] (with all ammissible values)

3.1.17 Area Boundary System

The area boundary system prevents the presence of workers and machine in not allowed or

dangerous areas. In case of workers, this is possible areas through alarms that will ring when the

operator is in the proximity of selected areas. When it refers to machines it is possible to implement

alarm that can notice the danger to the operators as well as directly implementing remote control

features. This feature will be used for workers by using the hardware installed on the smart helmet.

Similarly, the sensors can be installed on machines to verify that their operation remains within a

certain area.

3.1.17.1 Architecture

The system is composed of the following elements:

 N Anchor / Beacon device with periodic BLE signal transmission functionality to be installed

in no-access areas. Their purpose is to function as an indoor satellite for localizing the event

of access to a prohibited area

 A WeTAG device wearable by the operator

The WeTAG is equipped with:

 BLE receiver capable of picking up the signal transmitted by the indoor localization Anchors

 microcontroller that implements event localization, detection and forwarding algorithms

 GPS receiver for outdoor localization

 WiFi transceiver to communicate events to the server

 2G/2.5G transceiver to communicate events to the server

The WeTAG allows you to alert the operator when:

 the radio signal transmitted by one of the prohibited areas signalling Anchors is detected

and above threshold (indicates proximity to the prohibited area). The transmission power

set on the prohibited area signalling anchors is low (a few meters)

The WeTAG stops alerting the operator when:

 the radio signal transmitted by one of the prohibited areas signalling Anchors returns below

threshold or is no longer perceived continuously until a certain timeout (indicates distance

from the prohibited area)

Each change of state produces the recording of an event which is forwarded to RINA via a specific

API.

The WeTAG works as a signal concentrator and allows the forwarding of events to the server via 2G

/ 2.5G or WiFi connectivity with specific APIs. Figure 23 shows the block diagram of the system:

Specifications for Interoperability

58

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 23 Block Diagram of Area Boundary System

3.1.17.2 APIs

The following API has been defined for downloading data from the SmartTrack platform:

GET(POST) /events

From : date

To: date

Source: source_type

Type: event_type

Location: string (it may be a concatenation of location-floor-area)

Floor: string (it may be a concatenation of location-floor-area)

Area: string (it may be a concatenation of location-floor-area)

Response:

 [events] (with all ammissible values)

3.1.18 Environmental Monitoring System

The Environmental monitoring system is composed of two main instruments:

- The sound level meter 01dB Smart FUSION 4G provided by ACOEM Group: the function of

this instrument is to assess noise on the worksite. During a measurement with the

instrument in hand, the sound level meter must be pointed at the source according to

standard IEC 60651. The instrument is shown in Figure 24 with a general hardware overview

and its calibrator.

Specifications for Interoperability

59

Document ID: [101069610] [InCUBE] – D3.1 (v1)

The thermohygrometer DMA875 provided by LSI LASTEM (Figure 25): this is an instrument able to

measure environmental temperature, relative humidity and dew point. The determination of dew

point takes place according to the formulations specified by ISO 7726. The

humidity sensor works thanks to the hygro-capacity principle, works in a

range of 0÷100% RH, has an accuracy of ±1,5 % RH @ 23°C and has a

resolution of 0,1% RH.

This system is supposed to detect severe conditions for workers during

renovation work on the construction site.

The alert system is made possible thanks to the implementation of this

system in the Resilience Dashboard (RD) which is a single management

platform that enables the communication and orchestrated use of different

technological tools that lead to a “Resilient Construction Site”.

The Resilience Dashboard will be capitalized by the R-GUIDE: it will guarantee optimal operational

continuity and efficiency in the construction incorporating the process innovations developed within

WP2, whilst preserving and enhancing safety of workers, reducing wastes, and ensuring the

surrounding environment is not affected by the site.

At date, the data logger selected and available to record data provided by the thermohygrometer is

the IMC 5008. Connectors ACC/DSUBM-I2 have been used to test connection between data logger

and thermohygrometer (Figure 26).

Figure 24 Sound Level Meter

Figure 25

Thermohygrometer

Specifications for Interoperability

60

Document ID: [101069610] [InCUBE] – D3.1 (v1)

IMC C-SERIES is a family of real-time acquisition systems with very compact dimensions, robust

construction and fanless type: it is useful for a wide variety of measurement, analysis and control

situations.

Figure 27 Environmental Monitoring System

The abovementioned sensors and data logger could be changed to match the onsite requirements.

3.1.18.1 Data Model

The data model of this architecture is based on the data processing of the sensors composing the

system:

- Sound level meter FUSION 4G has no data logger; data will be managed by SW provided by

ACOEM Group and exported in .csv format in order to be saved in the Resilience Dashboard

and processed.

Figure 26 On the left: IMC 5008 Data Logger. On the right: connectors

ACC/DSUBM.

Specifications for Interoperability

61

Document ID: [101069610] [InCUBE] – D3.1 (v1)

- Thermohygrometer DMA 875 will be managed by data logger IMC 5008 that allows to save

data in .raw format: this data can be converted to .csv format to be saved in the Resilience

Dashboard and processed.

The post-processing will include the storage of the data, comparing them with thresholds

preliminary set according to the legislative framework (e.g. INAIL directives).

3.1.18.2 Protocols

Read access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Resilience

Dashboard

Data transfer

from

Phonometer

HTTP /

MQTT

.csv 1 noise data

every minute

Internal

Resilience

Dashboard

Data transfer

from IMC

5008 control

unit

HTTP /

MQTT

.raw /

.csv

1 humidity

data every

15 min/ 1

temperature

data every

15 minutes

Internal

Write access to components

Target

component
Access

description
Access

Protocol
Data

Format

Frequency

of collection

Data

sensitivity

Resilience

Dashboard

Periodic

reports of

statistical

analysis

HTTP .pdf /

JSON

Periodic Internal

Specifications for Interoperability

62

Document ID: [101069610] [InCUBE] – D3.1 (v1)

3.2 Common Specifications

3.2.1 Common Building Features

Table 2 summarizes the common features describing all and every building of the demo sites. For

each demo site (first column), we present the common features (second column) of all buildings

and building elements, as well as their properties (third column). The common features of Table 2

will be used to create the data model of the digital twin of buildings.

Table 2 Common Features of Buildings and Building Elements

Demo Site Feature Property Comments

Zaragoza

/ Trento /

Groningen

Building

building_id

Static information derived by

the IFC files.

It provides general

information (e.g., name,

location, floors, spaces)

about each building of each

pilot site.

It will be updated once.

building_name

building_location

Latitude, Longitude

building_type

building_id

zone_ids

It provides information

related to the building zones

(portal, stair, main door of

the building), floors and

spaces (dwellings, spaces

common, etc)

A zone_id can contain several

floors.

A space_id belongs to a

single floor_id.

A room_id belongs to a

single space_id.

zone_names

zone_id

floor_ids

floor_names

floor_id

space_ids

space_names

space_id

room_ids

room_names

Qto_Ifc (e.g.,

window_dimensions)

Width

Static information derived by

the IFC files.

It describes the dimensions

(e.g., width, length) of each

building element.

It will be updated twice, once

for the current status and

once during the renovation.

Length

Height

Net Lateral Area

Net volume

Pset_Classifications
IfcExportAs

Static information derived by

the IFC files.

There are unified

classifications systems in the

construction industry such us

Uniclass. It provides

information about the

classification of each element

of the building (e.g. beam,

pilar, window, electrical

device, etc).

IfcExportType

Uniclass2023Code

Uniclass2023Descrip

tion

Specifications for Interoperability

63

Document ID: [101069610] [InCUBE] – D3.1 (v1)

It will be updated twice, once

for the current status and

once during the renovation.

Pset_Definition (e.g.,

wall_definition)

Description
Static information derived by

the IFC files.

It provides a definition (e.g.,

short description) of each

building element.

It will be updated twice, once

for the current status and

once during the renovation.

IsExterior

System

Zone

Space

Level

Status

Pset_TypeCommon

(By type of element,

technical

characteristics)

type
Static information derived by

the IFC files.

It provides specific

information of each element

of the building, such us

technical information (type,

voltage, power factor,

acoustic rating, fire rating,

thermal transmittance, etc)

This information will be

updated during the

renovation phase.

voltage

power factor

acoustic rating

fire rating

thermal

transmittance

Pset_Tendering (e.g.,

window_tendering)

Reference
Static information derived by

the IFC files.

It provides information about

the tendering (e.g.,

manufacturer, production

year) of each building

element.

This information will be

updated during the

renovation phase. Some of

the features (i.e., Country

Available In, Price Database

1) will be periodically

updated.

Manufacturer

ProductURL

Technical

Information

Series

Model Label

Production Year

Country Available in

Measurement Unit

Pset_Logistics (e.g.,

door_logistics)

Assembly Place
Static information derived by

the IFC files.

It summarizes logistics

information (e.g., installation

time) about each building

element.

This information will be

updated during the

renovation phase.

Wrapping material

Container material

Installation Time

Pset_Management

Contact
Static information derived by

the IFC files.

It includes management-

oriented information (e.g.,

contact, maintenance) for

each building element.

This information will be

updated during the

renovation phase.

Service Life Duration

Maintenance

Is Extended Warranty

Warranty Period

Specifications for Interoperability

64

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Pset_Health & Safety Free Space for

Access

Static information derived by

the IFC files.

It contains information

related to health and safety

aspects of building elements.

This information will be

updated during the

renovation phase.

Minimum Required

Height

Dependent of

Accessible

Risk Level

Pset_Sustainability &

LCA

Unit
Static information derived by

the IFC files.

It contains information

evaluating the environmental

impact of building elements.

This information will be

updated during the

renovation phase.

Life Cycle Phase

Expected Service Life

Climate Change Per

Unit

Water Consumption

Per Unit

Total Primary Energy

Consumption Per

Unit

3.2.2 Standard Ontologies

Main relevant Standard Ontologies were reviewed in order to select the most appropriate entities

and attributes to be adopted within InCUBE. They are briefly presented in this section.

Industry Foundation Classes (IFC)

IFC
3

 is a data schema designed to describe data related to the building, architecture, and

construction industries. It is an open data schema definition that is platform-neutral and not

governed by a single vendor or consortium of suppliers. It is an object-based data schema with a

data model developed by buildingSMART to facilitate interoperability in the architecture,

engineering and construction industry. This format is frequently used for cooperation in projects

that involve building information modeling (BIM).

The construction, operation, and usage of a facility or installation may all be explained by the

schema definition. Building materials, manufactured goods, mechanical and electrical systems, cost

breakdowns, work schedules, and more may all be defined using IFC, in addition to more abstract

structural and energy analysis models. The required IFC data can be handled in centralized or linked

databases, imported/exported in files, or encoded in a variety of formats
4

, including XML, JSON, and

STEP, and sent over web services. Lastly, IFC data may be sent and received by hundreds of software

programs used by many parties.

3

 https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/

4

 https://technical.buildingsmart.org/standards/ifc/ifc-formats/

Specifications for Interoperability

65

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Building Topology Ontology

Building design, planning, construction, and maintenance are multifaceted endeavors involving

several stakeholders, each with distinct needs and interpretations of the shared information.

Additionally, during the course of the building's entire life cycle, each stakeholder consumes,

processes, and modifies information about it. A minimal, extendable ontology that describes

anything in its context of a building is needed because it is frequently necessary to describe a

sensor, product, or device in the context of the building in which it resides and because the building

itself is also an interesting feature in the context of a smart city. A simple ontology for summarizing

the fundamental topological concepts of a building is the Building Topology Ontology (BOT). BOT
5

is a minimal OWL DL ontology for specifying relationships between a building's sub-components. It

was proposed as an expandable baseline for usage in conjunction with more domain-specific

ontologies that adhere to the basic W3C guidelines of promoting reuse and limiting the complexity

of the schema to what is absolutely essential.

A list of principles considered by the BOT ontology is the following:

1. Zones are areas with spatial 3D volumes, and include Buildings, Storeys, and Spaces.

2. Zones may contain other zones, Buildings may contain storeys, Storeys may contain spaces.

3. Zones may intersect or be adjacent to other zones.

4. There are building elements, which may have sub elements.

5. Zones may have elements, either contained, adjacent, or intersecting it.

6. Adjacent zones and/or elements share some interface.

7. Zones and Elements have a 3D Model.

Zones are described as a segment of the real world or a virtual environment that is intrinsically

situated within it and has a three-dimensional spatial extent. Here are the definitions of the four

subtypes of Zones:

Site: An area with one or more structures;

Building: A stand-alone constructed unit having a distinctive spatial structure;

Storey: A level part of a building;

Space: A constrained three-dimensional area that can be conceptually or physically delimited.

5

 https://w3c-lbd-cg.github.io/bot/

Specifications for Interoperability

66

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 28 Classes and relationships involved in Zones

The Turtle version of the BOT ontology is available at http://www.w3id.org/bot/bot.ttl

BPO: Building Product Ontology

The Building Product Ontology defines concepts to describe building products in a schematic way.

As is frequently the case with template-driven product descriptions, it offers ways to describe

assembly structures and component interconnections as well as attribute properties to any

component without limiting their types. It also includes terminology for unordered, two-dimensional

lists to enable the expression of complex attributes.

The BPO's purview is limited to the product's schematic description; geometry and material

compositions are not included. As a result, it may be used to describe both theoretical product

components having geometric representations and ones without them, without any limitations. In

order to fully leverage the benefits of the Semantic Web, particularly for online searches, the BPO is

tightly matched with popular upper-level ontologies like SEAS
6

 and schema.org. For classification

purposes, BPO uses the buildingSMART Data Dictionary by referencing to the terms' bSDD GUID.

The description of assembly structures with BPO relies on three classes and two properties,

presented in the table below.

6

 https://w3id.org/seas

http://www.w3id.org/bot/bot.ttl

Specifications for Interoperability

67

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Table 3 Building Product Ontology

Classes

Components They serve as an abstract superclass of the

following two classes, for ease of querying and

enhanced reasoning

Elements They are components that cannot be decomposed

into further subcomponents and thereby pose as

the smallest and most elemental components in

this structure

Assemblies They are components that consist of at least two

sub-components (elements or other assemblies)

Properties

Consists of A property to indicate that an assembly consists of

the related component(s). This property is defined

to be transitive

Is part of It defines of which assembly a certain component

is a part of (inverse property of consists of)

In addition, a class for products is provided that inherits from the abstract component class to

specify which components can be offered as a product of the manufacturer. This class is a subclass

of the schema product
7

, according to the alignment to well-known upper-level ontologies. The

example below shows how these classes may be used to describe a product structure.

7

 https://schema.org/Product

Specifications for Interoperability

68

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 29 Modelling product structures example using the BPO

The component connection class is introduced to define the interconnections of a product's

components. The component connection class is supplemented with five relations that allow direct

interactions between linked components and reified relations.

• has outgoing connection, defining the relationship between an entity's output and its component

connection

• connects input of, defining the relationship between a component connection and an input of an

entity it connects

• is connected to, a chain property connecting two entities directed from the domain entity's output

to the range entity's input. This property is reinforced by a chain axiom and may be derived by

modeling the reified relation using the preceding two relations and a component connection

• is connected from, the inverse property of is connected to that connects two interconnected

entities directed from the domain entity's input to the range entity's output

• is connected with, defining an undirected interconnection between two components and is thus

defined as a symmetric property

Any component, and therefore any assembly, element, or product, can be specified by attributes

with a single value or attributes with value ranges, lists, or intervals according to the BPO schema.

Both types of attributes are linked to the schema.org property value and the SEAS Feature of Interest

property to align this schema with current upper-level ontologies. Furthermore, datatype properties

of schema.org, and unit definitions of the QUDT catalogue
8

 are re-used. When no existing property

met the exact interest of this ontology, new properties were defined and, if possible, aligned. The

8

 http://www.qudt.org/release2/qudt-catalog.html

Specifications for Interoperability

69

Document ID: [101069610] [InCUBE] – D3.1 (v1)

has attribute property connects a component to its attributes and should be compatible with both

the schema.org and SEAS schemes. Figure 29 provides an overview of attribute modeling options.

Figure 30 Component attributes example using BPO

The BPO can be combined with other ontologies. For example, BPO can be combined with an RDF-

based geometry description and a non-RDF taxonomy. It shall be noted that the BPO is not complete

but aims to serve as a compact ontology that can be re-used in various use cases and scenarios.

Smart Appliances REFerence (SAREF) ontology

The Smart Appliances REFerence (SAREF) ontology is a shared model of consensus that facilitates

the matching of existing assets (standards/protocols/datamodels/etc.) in the smart appliances

domain. An overview of the SAREF ontology is provided in Figure 31, where the main classes and

their relationships are illustrated.

Specifications for Interoperability

70

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 31 SAREF ontology overview [https://saref.etsi.org/core/v3.1.1/]

SAREF is based on the concept of Device (for example, a switch). Devices are physical objects meant

to perform one or more functions in homes, public places, or offices. The SAREF ontology provides

a set of basic functions that can be combined to create more complex functions in a single device.

A switch, for example, provides an actuating function of type "switching on/off". Each function

contains a set of instructions that may be selected as building blocks from a list. For instance,

"switching on/off" is related with the commands "switch on", "switch off", and "toggle".

A Device provides a Service to a network, which is a representation of a Function that makes the

function discoverable, registerable, and remotely controlled by other networked devices. One or

more functions can be represented by a Service. A Service is provided by a device that needs for its

function(s) to be discoverable, registerable, and remotely controlled by other devices.

A Device may have certain distinguishing characteristics, such as its model and manufacturer.

SAREF is designed in a modular fashion so that any device may be constructed using pre-defined

building components depending on the functions that the device performs. The diagram below

depicts common types of devices. Appliances, actuators, sensors, and meters are examples of

devices that can be represented, as illustrated in the image. It is worth mentioning that there are

more types of devices, sensors, and actuators that can be defined to extend SAREF.

Specifications for Interoperability

71

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Figure 32 SAREF Types of devices [https://saref.etsi.org/core/v3.1.1/]

A function is represented in SAREF with the Function class and is defined as the functionality

necessary to accomplish the task for which a device is designed. Examples of functions are

ActuatingFunction, SensingFunction, MeteringFunction and EventFunction. The Function class and

its properties are shown in Figure 33.

Figure 33 SAREF Function class [https://saref.etsi.org/core/v3.1.1/]

 ActuatingFunction: It allows to transmit data to actuators, such as level settings or binary

switching (on/off).

 SensingFunction allows to transmit data from sensors, such as measurement values (e.g.

humidity) or sensing data.

 MeteringFunction allows to get data from a meter, such as current meter reading or

instantaneous demand.

 EventFunction allows to notify another device that a certain threshold value has been exceeded.

Specifications for Interoperability

72

Document ID: [101069610] [InCUBE] – D3.1 (v1)

More details about the SAREF ontology can be found at the Official ETSI portal for SAREF
9

.

Brick schema

Brick
10

 is an open-source ontology-based metadata schema that captures the entities and

relationships necessary for effective representations of buildings and their subsystems. It describes

buildings in a machine-readable format to enable programmatic exploration of different operational,

structural and functional facets of a building. Brick adheres to the following design principles:

Completeness, Expressivity, Usability, Consistency and Extensibility. The four essential concepts of

Brick are presented below.

Entity: an entity is an abstraction of any physical, logical or virtual item; the actual "things" in a

building. There are physical, virtual, and logical entities. Physical entities are anything that has a

physical presence in the world. Typical examples are spaces and floors, mechanical equipment such

as lighting systems, and devices such as energy meters and EV chargers. Virtual entities are anything

whose representation is based in software, such as the values of sensors, the energy consumption

of an appliance, and actuation points that allow software to modify values (e.g. HVAC temperature

setpoints). Logical entities are entities or sets of entities that are defined by a set of rules. Zones,

and concepts such as class names and tags are included in this category.

Tag: a tag is an atomic fact or attribute of an entity. Indicative examples of tags are setpoints and

sensors. Brick utilizes the concept of tags from Project Haystack to ensure ease of use and flexibility.

Nevertheless, Brick uses more ways than just tags to identify the type of an entity.

Class: a class is a named category used for grouping entities. Classes are organised hierarchically,

while entities are instances of one or multiple classes. Associated tags can be set for a class to

provide useful annotations for discovery.

Relationship: a relationship defines the connection between two related entities. ‘Encapsulation’

(one entity is contained within another entity), ‘Sequence’ (one entity is applied before another entity

in a process) and ‘Instantiation’ (one entity’s type is given by another entity) are examples of

relationships.

9

 https://saref.etsi.org/core/v3.1.1/

10

 https://brickschema.org/

Use Case on Cross-Domain Data Interoperability

73

Document ID: [101069610] [InCUBE] – D3.1 (v1)

4 Use Case on Cross-Domain Data

Interoperability

ID: AnyDemoSite, RenovationManagerUC
Title: Management of resources, waste, assets and monitor of working conditions
Use Case short description and rationale

The renovation project manager should have access to the digital twin of each renovated building.

The Digital Twin will provide information related to the renovation site (e.g., material, waste,

assets), building energy simulations, environmental and costing analysis KPIs (e.g., electricity

consumption and the pricing scheme).

The goal of this use case is to demonstrate not only the benefits for the renovation management,

but also to show the interoperability among the different InCUBE components, from pilot sites,

monitoring tools to the logbook and dashboard.

Main Actors (initiators of the Use Case), their benefits and roles

Renovation Project Manager. She/He is responsible for the management of the renovation

including site management, site safety and project completion by performing quality control and

trade actions.

Secondary Actors (participating in the Use Case), their roles

System Administrator. She/He ensures the efficient and secure operation of the dedicated user

interface (Kentyou UI). The system administrator will be responsible for setting and configuring

the system, providing user support, monitoring system’s performance and health, ensuring

security standards, maintaining backup and creating disaster recovery plans.

Business Goal

Achieving a better coordination of all renovation aspects from planning and design to

construction and completion can lead to the following business benefits: 1) project delivery on

time, 2) staying on budget, 3) assuring quality and safety, 4) improving client and stakeholders’

satisfaction, 5) better risk management and resource allocation, 6) complying with laws and

regulations and 7) ensuring sustainability and minimizing environmental impact.

Preconditions

Any necessary privacy consents should be obtained. Moreover, the necessary infrastructure

should be set in place, such as IoT devices, edge devices, gateways, cloud servers, Kubernetes

instances, etc.

Detailed Scenario and main supporting blocks

Detailed Scenario

Use Case on Cross-Domain Data Interoperability

74

Document ID: [101069610] [InCUBE] – D3.1 (v1)

The renovation project manager will be able to login to the user interface of the Digital Twin

provided by Kentyou. After being logged in, s/he will be able to:

1. Explore on a map the different renovation site.

2. For each site, s/he will be able to check its renovation status (e.g., number of materials,

status of renovation of different components, etc), the building energy simulations and the

environmental and costing analysis KPIs (e.g., electricity consumption and the pricing

scheme)

3. For each site, s/he will be able to check statistical data and key operational characteristics

(e.g., energy performance).

Supporting blocks

The main supporting technological blocks of this Use Case are:

- Digital Building Logbook: Collects and stores information for each building. This

information can be static (e.g., building ID, building characteristics) or real-time (e.g.,

environmental conditions per site).

- Digital Twin: Aggregates data from cross-border pilot sites, analyses it and displays data

and their insights using Kentyou UI.

- BIM2BEM LCA: Estimates key operational characteristics (e.g., energy performance),

performs environmental and cost analysis and shares results with the Digital Twin.

- R-GUIDE: Receives IoT data from the on-site installation and automation systems and

shares it with the Digital Twin.

Postconditions

After the realization of this use case, we expect access to the digital twin of each building from

the different renovation sites via a dedicated user interface (Kentyou UI).

User Requirements

Below we summarize the user requirements (UR) of this use case.

UR_01: Allow the user to access the renovation information per building.

UR_02: Allow the user to see the available material, waste and assets per building.

UR_03: Allow the user to check the results on the environmental and cost analysis, as well as on

the building energy simulations.

Derived System Requirements

Below we summarize the function (FR) and non-functional (NFR) user requirements of this use

case.

FR_01: The system shall provide statistical information regarding the number of materials,

wastes, assets per building.

FR_02: The system shall provide access to real-time IoT measurements from the pilot sites.

FR_03: The system shall provide building energy simulated results and environmental and costing

analysis KPIs.

NFR_01: The system shall ensure robustness from electric supply and internet connectivity.

NFR_02: The system shall ensure data privacy and data storage security.

NFR_03: The system shall ensure easy access to the user interface.

Constraints and Barriers (technical, regulatory, …)

Use Case on Cross-Domain Data Interoperability

75

Document ID: [101069610] [InCUBE] – D3.1 (v1)

The following constraints and barriers should be considered for the successful realization of this

use case:

 Privacy and security concerns - threats to privacy or security should be addressed.

 Hardware requirements - necessary resources (e.g., IoT devices) should be obtained and

deployed.

 Unstable power or internet supply on the renovation site.

Relevant InCUBE Components involved

The Figure below shows the minimum desired InCUBE components to be put in place for the

realization of this UC.

How will this use case be demonstrated?

This use case will be demonstrated using the Digital Twin of Kentyou. The Digital Twin will be

visualized with the help of Kentyou UI.

Kentyou UI will provide a digital twin of the different buildings showing the cross-border

integration of all relevant information, ensuring access only to authenticated users.

Conclusion

76

Document ID: [101069610] [InCUBE] – D3.1 (v1)

5 Conclusion

This deliverable has presented an initial perspective on the architecture, data model, available

protocols and designed APIs for each InCUBE component. Moreover, it is detailing common

specifications, such as features of the digital twin of buildings and ontologies and describes a use

case that will demonstrate the capabilities of the InCUBE’s interoperability layer.

The document emphasizes the importance of fostering collaboration among different assets, to

formulate and adopt interoperable specifications. By doing so, the industry can overcome the

challenges associated with siloed ecosystems, promoting seamless integration and data

interchangeability.

The exploration of interoperable specifications for APIs and data models underscores the critical

need for standardized approaches in the realm of data exchange. Standardized APIs and data

models facilitate a more agile and adaptive environment, enabling the focus on creating value-added

features rather than grappling with compatibility issues. This, in turn, accelerates time-to-market

and reduces overall development costs.

This work will be taken-up and continued through the work of WP3 (as a basis for interoperability

evaluation), but also through the work of WP9 on the exploitation strategy. The outcome of this

future work will be reported in the upcoming deliverable of D3.2.

Overall, the pursuit of interoperable specifications for APIs and data models is a cornerstone in

building the InCUBE’s interoperability layer.

Annex: DBL Data Models

77

Document ID: [101069610] [InCUBE] – D3.1 (v1)

6 Annex: DBL Data Models

Below we present the JSON data models (v0.1) of the Digital Building Logbook. The final version will

be reported in the next deliverable (D3.2).

Building

{

 "building": {

 "id": "b662cf63-e5d6-410d-a015-cf4702390d5a",

 "name": "main building",

 "siteName": "Trento",

 "location": {

 "address": "street address",

 "latitude": 41.648,

 "longitude": -0.89

 },

 "owner": "user1",

 "type": "Dwelling",

 "storeys": [

 {

 "name": "",

 "spaces": [

 {

 "name": "",

 "zones": [

 {

 "name": ""

 }

]

 }

]

 }

]

 }

}

Annex: DBL Data Models

78

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Device

{

 "device": {

 "id": "32b09070-77eb-4970-8a0a-c9b3ee2024ef",

 "description": "",

 "type": "HVAC",

 "manufacturer": "manufacturer name",

 "model": "model number",

 "owner": "user1",

 "isOperational": true,

 "isUsedFor": "Comfort",

 "category": "<Physical/Virtual>",

 "attachedSensors": [

 "sensor_id"

],

 "location": {

 "buildingId": "building1",

 "spaceId": "space1",

 "zoneId": "zone1"

 },

 "hasFunction": [

 {

 "type": "ActuatingFunction",

 "hasCommand": [

 {

 "type": "OnCommand"

 },

 {

 "type": "OffCommand"

 },

 {

 "type": "SetLevelCommand"

 }

]

 },

 {

 "type": "SensingFunction",

 "measuresProperty": [

 {

 "type": "Temperature",

 "unitOfMeasure": "DegreeCelsius"

 },

 {

 "type": "Humidity",

 "unitOfMeasure": "Percent"

 }

]

 }

Annex: DBL Data Models

79

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Sensor

{

 "sensor": {

 "id": "05d1d4a0-ed83-46ab-b460-39eb4293197f",

 "description": "",

 "type": "Environmental",

 "manufacturer": "manufacturer name",

 "model": "model number",

 "owner": "user1",

 "isOperational": true,

 "isUsedFor": "Metering fuction",

 "category": "<Physical/Virtual>",

 "location": {

 "buildingId": "building1",

 "spaceId": "space1",

 "zoneId": "zone1"

 },

 "sensingFunction": [

 {

 "property": "Temperature",

 "type": "numeric",

 "unitOfMeasure": "Celsius"

 },

 {

 "property": "Humidity",

 "type": "numeric",

 "unitOfMeasure": "Percentage"

 },

 {

 "property": "Luminance",

 "type": "numeric",

 "unitOfMeasure": "Lux"

 }

]

 }

}

Annex: DBL Data Models

80

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Product

{

 "product": {

 "id": "d76221aa-3d99-4cc2-a3b2-e762d1ccf8bf",

 "description": "",

 "manufacturer": "manufacturer name",

 "model": "model number",

 "category": "<Physical/Virtual>",

 "url": "URL of the product",

 "releaseDate": "year-month-date",

 "countryOfOrigin": "country name",

 "countryOfAssembly": "country name",

 "dimensions": {

 "width": 1.5,

 "height": 2,

 "depth": 2.5,

 "weight": 35

 },

 "hasEnergyConsumptionDetails": {

 "hasEnergyEfficiencyCategory": "<yes/no>",

 "energyEfficiencyScaleMin": "A++",

 "energyEfficiencyScaleMax": "A+++"

 },

 "hasMeasurement": {},

 "hasComponent": [

 {

 "name": "",

 "property": [

 {

 "name": "",

 "value": ""

 },

 {

 "name": "",

 "value": "",

 "unitOfMeasure": ""

 }

]

 }

],

 "price": {

 "value": 2000,

 "format": "Euro"

 },

 "additionalProperty": [

 {

 "name": "property_name",

Annex: DBL Data Models

81

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Activity

RenovationScenario

{

 "activity": {

 "id": "c0a638dc-515d-441d-bbbf-368cb0955fa9",

 "type": "Installation",

 "description": "",

 "location": {

 "buildingId": "building1"

 },

 "durationHours": 24,

 "priorityLevel": 1,

 "linkedProducts": [

 "product_id"

],

 "constraints": [],

 "personnelRequirement": [

 {}

],

 "equipmentRequirement": [

 {}

],

 "materialRequirement": [

 {}

],

 "execution": {

 "status": "<Planned/Running/Finished>",

 "dateTimeStart": "2023-10-10T12:00:00.000",

 "dateTimeEnd": "2023-10-11T18:00:00.000"

 }

 }

}

{

 "renovationScenario": {

 "id": "",

 "description": "",

 "buildingId": "",

 "renovationActivities": [

 {

 "id": "",

 "description": "",

 "type": ""

 },

 {

 "id": "",

 "description": "",

 "type": ""

 }

]

 }

}

Annex: DBL Data Models

82

Document ID: [101069610] [InCUBE] – D3.1 (v1)

{

 "user": {

 "id": "a791942a-38e1-4d39-9b83-5723e04adc8c",

 "account": {

 "mail": "example@incube.com",

 "username": "johndoe",

 "passwd": "123456"

 },

 "generic": {

 "fullname": "John Doe",

 "role": "Worker",

 "trade": "Electrical Technician"

 },

 "associatedBuildings": [

 "building_id1",

 "building_id2"

],

 "preferences": {

 "propertyName": "Value"

 },

 "skills": {

 "experienceLevel": {

 "id": "1",

 "value": "Novice"

 },

 "targetExperienceLevel": {

 "id": "2",

 "value": "Experienced"

 },

 "typical": [

 {

 "skillID": "1",

 "description": "Equipment installer",

 "level": 2

 },

 {

 "skillID": "2",

 "description": "Malfunctions handling",

 "level": 1

 }

]

 }

 }

}

Annex: DBL Data Models

83

Document ID: [101069610] [InCUBE] – D3.1 (v1)

User

Event (Measurement)

{

 "event": {

 "id": "4fc93a0a-fe55-4d10-a21f-facf54561e49",

 "type": "Measurement",

 "description": "A measurement event",

 "dateTime": "2023-10-10T12:00:10.000",

 "sourceId": "device_id",

 "buildingName": "",

 "spaceName": "",

 "content": [

 {

 "description": "Temperature measurement",

 "property": "Temperature",

 "value": 23.1,

 "unitOfMeasure": "DegreeCelsius",

 "refDateTime": "2023-10-10T12:00:00.000",

 "metadata": {}

 },

 {

 "description": "Relative humidity measurement",

 "property": "Humidity",

 "value": 35,

 "unitOfMeasure": "Percent",

 "refDateTime": "2023-10-10T12:00:00.000",

 "metadata": {}

 }

]

 }

}

Annex: DBL Data Models

84

Document ID: [101069610] [InCUBE] – D3.1 (v1)

{

 "event": {

 "id": "4fc93a0a-fe55-4d10-a21f-facf54561e49",

 "type": "ForecastPowerGeneration",

 "description": "Generation forecasting event",

 "dateTime": "2023-10-10T14:00:00.000",

 "sourceId": "pv1",

 "buildingName": "",

 "spaceName": "",

 "content": [

 {

 "description": "Generation forecasting",

 "property": "Power",

 "value": 1050,

 "unitOfMeasure": "Watt",

 "refDateTime": "2023-10-10T14:15:00.000",

 "metadata": {}

 },

 {

 "description": "Generation forecasting",

 "property": "Power",

 "value": 1120,

 "unitOfMeasure": "Watt",

 "refDateTime": "2023-10-10T14:30:00.000",

 "metadata": {}

 },

 {

 "description": "Generation forecasting",

 "property": "Power",

 "value": 900,

 "unitOfMeasure": "Watt",

 "refDateTime": "2023-10-10T14:45:00.000",

 "metadata": {}

 },

 {

 "description": "Generation forecasting",

 "property": "Power",

 "value": 860,

 "unitOfMeasure": "Watt",

 "refDateTime": "2023-10-10T15:00:00.000",

 "metadata": {}

 }

]

 }

}

Annex: DBL Data Models

85

Document ID: [101069610] [InCUBE] – D3.1 (v1)

Event (Forecast)

Event (Notification)

{

 "event": {

 "id": "4fc93a0a-fe55-4d10-a21f-facf54561e49",

 "type": "Notification",

 "description": "A contact message event",

 "dateTime": "2023-10-10T12:00:00.000",

 "sourceId": "Component name",

 "buildingName": "",

 "spaceName": "",

 "content": [

 {

 "category": "Notification",

 "priority": "<Normal/High>",

 "topic": "Message title",

 "text": "Message body",

 "metadata": {

 "destination": "Everyone"

 }

 }

]

 }

}

